Department of Radiology, Başaksehir Çam and Sakura City Hospital, Istanbul, Turkey.
Department of Urology, Başaksehir Çam and Sakura City Hospital, Istanbul, Turkey.
Ann Surg Oncol. 2024 Sep;31(9):5845-5850. doi: 10.1245/s10434-024-15760-5. Epub 2024 Jul 13.
Bladder cancer treatment decisions hinge on detecting muscle invasion. The 2018 "Vesical Imaging Reporting and Data System" (VI-RADS) standardizes multiparametric MRI (mp-MRI) use. Radiomics, an analysis framework, provides more insightful information than conventional methods.
To determine how well MIBC (Muscle Invasive Bladder Cancer) and NMIBC (Non-Muscle Invasive Bladder Cancer) can be distinguished using mp-MRI radiomics features.
We conducted a study with 73 bladder cancer patients diagnosed pathologically, who underwent preoperative mp-MRI from January 2020 to July 2022. Utilizing 3D Slicer (version 4.8.1) and Pyradiomics, we manually extracted radiomic features from apparent diffusion coefficient (ADC) maps created from diffusion-weighted imaging. The LASSO approach identified optimal features, and we addressed sample imbalance using SMOTE. We developed a classification model using textural features alone or combined with VI-RADS, employing a random forest classifier with 10-fold cross-validation. Diagnostic performance was assessed using the area under the ROC curve analysis.
Among 73 patients (63 men, 10 women; median age: 63 years), 41 had muscle-invasive and 32 had superficial bladder cancer. Muscle invasion was observed in 25 of 41 patients with VI-RADS 4 and 5 scores and 12 of 32 patients with VI-RADS 1, 2, and 3 scores (accuracy: 77.5%, sensitivity: 67.7%, specificity: 88.8%). The combined VI-RADS score and radiomics model (AUC = 0.92 ± 0.12) outperformed the single radiomics model using ADC MRI (AUC = 0.83 ± 0.22 with 10-fold cross-validation) in this dataset.
Before undergoing surgery, bladder cancer invasion in muscle might potentially be predicted using a radiomics signature based on mp-MRI.
膀胱癌的治疗决策取决于是否存在肌肉浸润。2018 年“膀胱影像学报告和数据系统”(VI-RADS)规范了多参数 MRI(mp-MRI)的使用。放射组学是一种分析框架,可提供比传统方法更深入的信息。
确定使用 mp-MRI 放射组学特征区分肌层浸润性膀胱癌(MIBC)和非肌层浸润性膀胱癌(NMIBC)的效果。
我们对 2020 年 1 月至 2022 年 7 月期间接受术前 mp-MRI 的 73 例膀胱癌患者进行了研究。我们使用 3D Slicer(版本 4.8.1)和 Pyradiomics 从扩散加权成像生成的表观扩散系数(ADC)图中手动提取放射组学特征。LASSO 方法确定了最优特征,并通过 SMOTE 解决了样本不平衡问题。我们使用随机森林分类器进行 10 倍交叉验证,仅使用纹理特征或结合 VI-RADS 开发了分类模型。使用 ROC 曲线下面积分析评估诊断性能。
在 73 名患者(63 名男性,10 名女性;中位年龄:63 岁)中,41 名患者患有肌层浸润性膀胱癌,32 名患者患有表浅膀胱癌。在 41 名 VI-RADS 4 和 5 评分的患者中有 25 例观察到肌肉侵犯,在 32 名 VI-RADS 1、2 和 3 评分的患者中有 12 例观察到肌肉侵犯(准确率:77.5%,敏感度:67.7%,特异性:88.8%)。在该数据集上,与单独使用 ADC MRI 的放射组学模型(AUC=0.83±0.22,10 倍交叉验证)相比,联合 VI-RADS 评分和放射组学模型(AUC=0.92±0.12)表现更好。
在接受手术之前,基于 mp-MRI 的放射组学特征可能有助于预测膀胱癌是否侵犯肌肉。