Suppr超能文献

术前预测膀胱癌肌层侵犯:使用扩散加权 MRI 的 3D 容积放射组学、VI-RADS 评分或两者联合的作用。

Preoperative Prediction of Muscle Invasiveness in Bladder Cancer: The Role of 3D Volumetric Radiomics Using Diffusion-Weighted MRI, the VI-RADS Score, or a Combination of Both.

机构信息

Department of Radiology, Başaksehir Çam and Sakura City Hospital, Istanbul, Turkey.

Department of Urology, Başaksehir Çam and Sakura City Hospital, Istanbul, Turkey.

出版信息

Ann Surg Oncol. 2024 Sep;31(9):5845-5850. doi: 10.1245/s10434-024-15760-5. Epub 2024 Jul 13.

Abstract

BACKGROUND

Bladder cancer treatment decisions hinge on detecting muscle invasion. The 2018 "Vesical Imaging Reporting and Data System" (VI-RADS) standardizes multiparametric MRI (mp-MRI) use. Radiomics, an analysis framework, provides more insightful information than conventional methods.

PURPOSE

To determine how well MIBC (Muscle Invasive Bladder Cancer) and NMIBC (Non-Muscle Invasive Bladder Cancer) can be distinguished using mp-MRI radiomics features.

METHODS

We conducted a study with 73 bladder cancer patients diagnosed pathologically, who underwent preoperative mp-MRI from January 2020 to July 2022. Utilizing 3D Slicer (version 4.8.1) and Pyradiomics, we manually extracted radiomic features from apparent diffusion coefficient (ADC) maps created from diffusion-weighted imaging. The LASSO approach identified optimal features, and we addressed sample imbalance using SMOTE. We developed a classification model using textural features alone or combined with VI-RADS, employing a random forest classifier with 10-fold cross-validation. Diagnostic performance was assessed using the area under the ROC curve analysis.

RESULTS

Among 73 patients (63 men, 10 women; median age: 63 years), 41 had muscle-invasive and 32 had superficial bladder cancer. Muscle invasion was observed in 25 of 41 patients with VI-RADS 4 and 5 scores and 12 of 32 patients with VI-RADS 1, 2, and 3 scores (accuracy: 77.5%, sensitivity: 67.7%, specificity: 88.8%). The combined VI-RADS score and radiomics model (AUC = 0.92 ± 0.12) outperformed the single radiomics model using ADC MRI (AUC = 0.83 ± 0.22 with 10-fold cross-validation) in this dataset.

CONCLUSION

Before undergoing surgery, bladder cancer invasion in muscle might potentially be predicted using a radiomics signature based on mp-MRI.

摘要

背景

膀胱癌的治疗决策取决于是否存在肌肉浸润。2018 年“膀胱影像学报告和数据系统”(VI-RADS)规范了多参数 MRI(mp-MRI)的使用。放射组学是一种分析框架,可提供比传统方法更深入的信息。

目的

确定使用 mp-MRI 放射组学特征区分肌层浸润性膀胱癌(MIBC)和非肌层浸润性膀胱癌(NMIBC)的效果。

方法

我们对 2020 年 1 月至 2022 年 7 月期间接受术前 mp-MRI 的 73 例膀胱癌患者进行了研究。我们使用 3D Slicer(版本 4.8.1)和 Pyradiomics 从扩散加权成像生成的表观扩散系数(ADC)图中手动提取放射组学特征。LASSO 方法确定了最优特征,并通过 SMOTE 解决了样本不平衡问题。我们使用随机森林分类器进行 10 倍交叉验证,仅使用纹理特征或结合 VI-RADS 开发了分类模型。使用 ROC 曲线下面积分析评估诊断性能。

结果

在 73 名患者(63 名男性,10 名女性;中位年龄:63 岁)中,41 名患者患有肌层浸润性膀胱癌,32 名患者患有表浅膀胱癌。在 41 名 VI-RADS 4 和 5 评分的患者中有 25 例观察到肌肉侵犯,在 32 名 VI-RADS 1、2 和 3 评分的患者中有 12 例观察到肌肉侵犯(准确率:77.5%,敏感度:67.7%,特异性:88.8%)。在该数据集上,与单独使用 ADC MRI 的放射组学模型(AUC=0.83±0.22,10 倍交叉验证)相比,联合 VI-RADS 评分和放射组学模型(AUC=0.92±0.12)表现更好。

结论

在接受手术之前,基于 mp-MRI 的放射组学特征可能有助于预测膀胱癌是否侵犯肌肉。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验