Yu Runqun, Luo Zhuoyang
School of Economics and Management, Dalian Jiaotong University, Dalian, 116028, China.
Sci Rep. 2024 Jul 13;14(1):16217. doi: 10.1038/s41598-024-67236-x.
In the study of urban development, it is very important to evaluate the influence of production factors reasonably and efficiently for the region to achieve efficient development. The principal aim of this investigation is to amalgamate the conventional measurement model characterized by robust interpretability with the non-parametric model characterized by limited interpretability, thereby enhancing the precision of research outcomes. Towards this objective, the study employs an optimized directional distance function integrated with a global Malmquist-Luenberger index to formulate a comprehensive total factor productivity measurement framework. In elucidating the homogeneous attributes of regions, departing from prior methodologies reliant on manual or direct algorithmic partitioning, this paper employs the K-means clustering algorithm for index discernment, abstracting the concept of K-means clustering centroids to encapsulate regional homogeneity, thereby delineating results through the visualization of regional development potential maps and the evolution of centroid-based clustering trend maps. The findings of the investigation illuminate common patterns of change across disparate regions, proposing a strategy for leveraging regional resource endowments towards a cohesive framework, thereby transcending constraints imposed by production efficiency limitations. Amidst the backdrop of the COVID-19 pandemic, this study draws upon provincial-level data spanning from 2000 to 2018 in China. The conclusive analytical outcomes underscore the pivotal role of energy factors in regional development efficiency, particularly within high-potential development regions, followed by the capital and labor factors. Concurrently, the study discerns a discernible hierarchical pattern among areas of development potential, which exhibits correlation with factor mobility dynamics.
在城市发展研究中,合理高效地评估生产要素对区域实现高效发展的影响至关重要。本研究的主要目的是将具有较强解释性的传统测量模型与解释性有限的非参数模型相结合,从而提高研究结果的准确性。为实现这一目标,该研究采用了优化的方向距离函数,并结合全局Malmquist-Luenberger指数,构建了一个综合的全要素生产率测量框架。在阐释区域的同质属性时,本文摒弃了以往依赖人工或直接算法划分的方法,采用K均值聚类算法进行指标识别,抽象出K均值聚类中心的概念来概括区域同质性,进而通过区域发展潜力图的可视化和基于聚类中心的趋势图的演变来描绘结果。研究结果揭示了不同区域共同的变化模式,提出了一种利用区域资源禀赋构建凝聚框架的策略,从而突破生产效率限制带来的约束。在新冠疫情背景下,本研究借鉴了中国2000年至2018年的省级数据。最终的分析结果强调了能源因素在区域发展效率中的关键作用,特别是在高潜力发展区域,其次是资本和劳动力因素。同时,该研究还识别出发展潜力区域之间存在明显的层次模式,这与要素流动动态相关。