Suppr超能文献

使用多参数纵向分析对多发性硬化病变表型进行微观结构特征描述。

Microstructural characterization of multiple sclerosis lesion phenotypes using multiparametric longitudinal analysis.

机构信息

Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Geneva and Zurich, Switzerland.

Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

出版信息

J Neurol. 2024 Sep;271(9):5944-5957. doi: 10.1007/s00415-024-12568-x. Epub 2024 Jul 13.

Abstract

BACKGROUND AND OBJECTIVES

In multiple sclerosis (MS), slowly expanding lesions were shown to be associated with worse disability and prognosis. Their timely detection from cross-sectional data at early disease stages could be clinically relevant to inform treatment planning. Here, we propose to use multiparametric, quantitative MRI to allow a better cross-sectional characterization of lesions with different longitudinal phenotypes.

METHODS

We analysed T1 and T2 relaxometry maps from a longitudinal cohort of MS patients. Lesions were classified as enlarging, shrinking, new or stable based on their longitudinal volumetric change using a newly developed automated technique. Voxelwise deviations were computed as z-scores by comparing individual patient data to T1, T2 and T2/T1 normative values from healthy subjects. We studied the distribution of microstructural properties inside lesions and within perilesional tissue.

RESULTS AND CONCLUSIONS

Stable lesions exhibited the highest T1 and T2 z-scores in lesion tissue, while the lowest values were observed for new lesions. Shrinking lesions presented the highest T1 z-scores in the first perilesional ring while enlarging lesions showed the highest T2 z-scores in the same region. Finally, a classification model was trained to predict the longitudinal lesion type based on microstructural metrics and feature importance was assessed. Z-scores estimated in lesion and perilesional tissue from T1, T2 and T2/T1 quantitative maps carry discriminative and complementary information to classify longitudinal lesion phenotypes, hence suggesting that multiparametric MRI approaches are essential for a better understanding of the pathophysiological mechanisms underlying disease activity in MS lesions.

摘要

背景与目的

在多发性硬化症(MS)中,逐渐扩大的病变与更严重的残疾和预后相关。在疾病早期的横断面数据中及时检测到这些病变,可能对告知治疗计划具有重要的临床意义。在这里,我们提出使用多参数、定量 MRI 来更好地对具有不同纵向表型的病变进行横断面特征描述。

方法

我们分析了来自 MS 患者纵向队列的 T1 和 T2 弛豫率图。根据新开发的自动技术,基于病变的纵向容积变化,将病变分为扩大、缩小、新发或稳定。通过将个体患者数据与健康受试者的 T1、T2 和 T2/T1 正常值进行比较,计算每个体素的微结构属性的偏离程度作为 z 分数。我们研究了病变内部和病变周围组织内的微结构属性的分布。

结果与结论

稳定病变的病变组织中的 T1 和 T2 z 分数最高,而新病变的 T1 和 T2 z 分数最低。缩小病变在第一病变周围环中表现出最高的 T1 z 分数,而扩大病变在同一区域中表现出最高的 T2 z 分数。最后,训练了一个分类模型,基于微结构指标预测纵向病变类型,并评估了特征重要性。从 T1、T2 和 T2/T1 定量图中估算的病变和病变周围组织的 z 分数具有鉴别和补充信息,可以对纵向病变表型进行分类,这表明多参数 MRI 方法对于更好地理解 MS 病变中疾病活动的病理生理机制至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a5/11377637/7fd7bf797bd2/415_2024_12568_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验