Ghorai Arijit, Chung Hoyong
Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
Adv Mater. 2024 Sep;36(38):e2406610. doi: 10.1002/adma.202406610. Epub 2024 Jul 14.
In this study, an innovative and cost-effective ionic polymer for CO capture and utilization for the first time, using abundant and nonfood-based biomass lignin is reported. The modified ionic polymer synthesizes through the reaction of glycidyltrimethylammonium chloride with lignin under alkaline conditions to yield quaternary ammonium ionic functionality. Subsequently, the hydroxide-based pure ionic lignin polymer is employed for CO capture from both direct air and concentrated CO sources at room temperature and atmospheric pressure. Structural characterization of the polymers is accomplished through H, C, and 2D-heteronuclear single quantum coherence (HSQC) NMR, and FT-IR spectroscopy. The CO capture process is established through the formation of bicarbonate ions alongside the presence of CO. The captured CO is precisely quantified by using inverse-gated proton decoupled C NMR with an internal standard (trioxane). Remarkably, the captured-CO amounts of ionic lignin polymer are 1.06 mmol g (47 mg g) from concentrated-CO source and 0.60 mmol g (26 mg g) from direct-air. The captured-CO in ionic lignin polymer is released in controlled manner and utilized in the synthesis of cyclic carbonate, showcasing the productive application of the captured carbon. Moreover, the fully controlled recovering of ionic lignin polymer achieves via repeated CO release ↔ CO capture.
在本研究中,首次报道了一种创新且具有成本效益的离子聚合物,用于捕获和利用二氧化碳,该聚合物使用了丰富的非食用生物质木质素。改性离子聚合物通过在碱性条件下使环氧丙基三甲基氯化铵与木质素反应合成,以产生季铵离子官能团。随后,基于氢氧化物的纯离子木质素聚合物用于在室温和大气压下从直接空气和浓缩二氧化碳源中捕获二氧化碳。通过氢、碳和二维异核单量子相干(HSQC)核磁共振以及傅里叶变换红外光谱对聚合物进行结构表征。通过在二氧化碳存在下形成碳酸氢根离子来建立二氧化碳捕获过程。使用带有内标(三恶烷)的反门控质子去耦碳核磁共振精确量化捕获的二氧化碳。值得注意的是,离子木质素聚合物从浓缩二氧化碳源捕获的二氧化碳量为1.06 mmol/g(47 mg/g),从直接空气中捕获的量为0.6 mmol/g(26 mg/g)。离子木质素聚合物中捕获的二氧化碳以可控方式释放,并用于环状碳酸酯的合成,展示了捕获碳的有效应用。此外,通过重复的二氧化碳释放↔二氧化碳捕获实现了离子木质素聚合物的完全可控回收。