Department of Computer Science, School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China.
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae341.
Recent advances in chromatin conformation capture technologies, such as SPRITE and Pore-C, have enabled the detection of simultaneous contacts among multiple chromatin loci. This has made it possible to investigate the cooperative transcriptional regulation involving multiple genes and regulatory elements at the resolution of a single molecule. However, these technologies are unavoidably subject to the random polymer looping effect and technical biases, making it challenging to distinguish genuine regulatory relationships directly from random polymer interactions. Here, we present HyperloopFinder, a method for identifying regulatory multi-way chromatin contacts (hyperloops) by jointly modeling the random polymer looping effect and technical biases to estimate the statistical significance of multi-way contacts. The results show that our model can accurately estimate the expected interaction frequency of multi-way contacts based on the distance distribution of pairwise contacts, revealing that most multi-way contacts can be formed by randomly linking the pairwise contacts adjacent to each other. Moreover, we observed the spatial colocalization of the interaction sites of hyperloops from image-based data. Our results also revealed that hyperloops can function as scaffolds for the cooperation among multiple genes and regulatory elements. In summary, our work contributes novel insights into higher-order chromatin structures and functions and has the potential to enhance our understanding of transcriptional regulation and other cellular processes.
近年来,染色质构象捕获技术取得了一些进展,例如 SPRITE 和 Pore-C,这些技术使我们能够检测多个染色质位置之间的同时接触。这使得我们有可能在单个分子的分辨率上研究涉及多个基因和调控元件的协同转录调控。然而,这些技术不可避免地受到随机聚合物环化效应和技术偏差的影响,使得直接区分真正的调控关系与随机聚合物相互作用具有挑战性。在这里,我们提出了 HyperloopFinder,这是一种通过联合建模随机聚合物环化效应和技术偏差来识别调控多向染色质接触(hyperloops)的方法,以估计多向接触的统计显著性。结果表明,我们的模型可以根据成对接触的距离分布准确估计多向接触的预期相互作用频率,揭示大多数多向接触可以通过随机连接彼此相邻的成对接触形成。此外,我们还观察到基于图像数据的 hyperloops 相互作用位点的空间共定位。我们的结果还表明,hyperloops 可以作为多个基因和调控元件之间合作的支架。总之,我们的工作为更高阶染色质结构和功能提供了新的见解,并有可能增强我们对转录调控和其他细胞过程的理解。