Suppr超能文献

利用超图表示学习探测多通路染色质相互作用

MATCHA: Probing multi-way chromatin interaction with hypergraph representation learning.

机构信息

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

出版信息

Cell Syst. 2020 May 20;10(5):397-407.e5. doi: 10.1016/j.cels.2020.04.004.

Abstract

Recent advances in ligation-free, genome-wide chromatin interaction mapping such as SPRITE and ChIA-Drop have enabled the identification of simultaneous interactions involving multiple genomic loci within the same nuclei, which are informative to delineate higher-order genome organization and gene regulation mechanisms at single-nucleus resolution. Unfortunately, computational methods for analyzing multi-way chromatin interaction data are significantly underexplored. Here we develop an algorithm, called MATCHA, based on hypergraph representation learning where multi-way chromatin interactions are represented as hyperedges. Applications to SPRITE and ChIA-Drop data suggest that MATCHA is effective to denoise the data and make predictions, which greatly enhances the data quality for analyzing the properties of multi-way chromatin interactions. MATCHA provides a promising framework to significantly improve the analysis of multi-way chromatin interaction data and has the potential to offer unique insights into higher-order chromosome organization and function. MATCHA is freely available for download here: https://github.com/ma-compbio/MATCHA.

摘要

近年来,无连接、全基因组染色质互作图谱技术(如 SPRITE 和 ChIA-Drop)的发展,使得我们能够鉴定同一核内多个基因组区域之间的同时相互作用,这些相互作用信息有助于描绘更高阶的基因组结构和单细胞分辨率下的基因调控机制。不幸的是,分析多通路染色质互作数据的计算方法还远远没有得到充分探索。在这里,我们开发了一种算法,称为 MATCHA,它基于超图表示学习,其中多通路染色质互作被表示为超边。对 SPRITE 和 ChIA-Drop 数据的应用表明,MATCHA 能够有效地对数据进行去噪和预测,这极大地提高了分析多通路染色质互作特性的数据质量。MATCHA 为显著改善多通路染色质互作数据的分析提供了一个有前景的框架,并有可能为高阶染色体结构和功能提供独特的见解。MATCHA 可在此处免费下载:https://github.com/ma-compbio/MATCHA。

相似文献

7

引用本文的文献

3
Current and future directions in network biology.网络生物学的当前与未来发展方向。
Bioinform Adv. 2024 Aug 14;4(1):vbae099. doi: 10.1093/bioadv/vbae099. eCollection 2024.
6
A Lightweight Framework For Chromatin Loop Detection at the Single-Cell Level.单细胞水平染色质环检测的轻量级框架。
Adv Sci (Weinh). 2023 Nov;10(33):e2303502. doi: 10.1002/advs.202303502. Epub 2023 Oct 10.
8
Computational methods for analysing multiscale 3D genome organization.分析多尺度 3D 基因组结构的计算方法。
Nat Rev Genet. 2024 Feb;25(2):123-141. doi: 10.1038/s41576-023-00638-1. Epub 2023 Sep 6.
9

本文引用的文献

3
Methods for mapping 3D chromosome architecture.3D 染色体构象的绘图方法。
Nat Rev Genet. 2020 Apr;21(4):207-226. doi: 10.1038/s41576-019-0195-2. Epub 2019 Dec 17.
8
Mechanisms of Interplay between Transcription Factors and the 3D Genome.转录因子与三维基因组相互作用的机制。
Mol Cell. 2019 Oct 17;76(2):306-319. doi: 10.1016/j.molcel.2019.08.010. Epub 2019 Sep 11.
10
Multiplex chromatin interactions with single-molecule precision.多聚体染色质相互作用的单分子精度研究
Nature. 2019 Feb;566(7745):558-562. doi: 10.1038/s41586-019-0949-1. Epub 2019 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验