Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
Shaoguan Municipal Health Supervision Agency, Shaoguan 510200, China.
Int J Food Microbiol. 2024 Sep 16;422:110824. doi: 10.1016/j.ijfoodmicro.2024.110824. Epub 2024 Jul 9.
High-resolution and efficient typing for Laribacter hongkongensis (L. hongkongensis) is essential for epidemiological investigation of such emerging foodborne pathogens. Clustered regularly interspaced short palindromic repeats (CRISPR) typing is an innovative molecular method that shows great promise for L. hongkongensis typing. Here, we explored the CRISPR typing method by combining CRISPR1 and CRISPR2 loci to characterize a collection of 109 L. hongkongensis isolates from humans and animals and compared it to current molecular methods such as pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The results showed that all three methods have high discriminatory power (diversity index was 0.9902 for PFGE, 0.9663 for CRISPR and 0.9562 for MLST); strong congruence was observed between them (Rand index was 0.969 between CRISPR and PFGE, 0.953 between CRISPR and MLST, 0.958 between PFGE and MLST). CRISPR typing could well distinguish the isolates in the same STs or PFGE profiles, and the genetic information contained by the CRISPR array is useful for deep phylogenetic typing. We demonstrate that rapid CRISPR typing is a practical genetic fingerprinting tool with high resolution, comparable ease of use and lower cost, ability to track the source of various groups of L. hongkongensis strains and indication of genetic characteristics.
高分辨率和高效的分型对于研究新兴食源性病原体拉氏利斯特菌(L. hongkongensis)的流行病学至关重要。成簇规律间隔短回文重复序列(CRISPR)分型是一种创新的分子方法,对于 L. hongkongensis 的分型具有很大的潜力。在这里,我们通过结合 CRISPR1 和 CRISPR2 基因座来探索 CRISPR 分型方法,对来自人类和动物的 109 株 L. hongkongensis 分离株进行了特征描述,并将其与目前的分子方法(如脉冲场凝胶电泳(PFGE)和多位点序列分型(MLST))进行了比较。结果表明,这三种方法均具有很高的分辨力(PFGE 的多样性指数为 0.9902,CRISPR 的多样性指数为 0.9663,MLST 的多样性指数为 0.9562);它们之间具有很强的一致性(CRISPR 与 PFGE 之间的 Rand 指数为 0.969,CRISPR 与 MLST 之间的 Rand 指数为 0.953,PFGE 与 MLST 之间的 Rand 指数为 0.958)。CRISPR 分型可以很好地区分同一 ST 或 PFGE 图谱中的分离株,而且 CRISPR 序列中包含的遗传信息对于深入的系统发育分型非常有用。我们证明了快速的 CRISPR 分型是一种实用的遗传指纹工具,具有高分辨率、易用性相当、成本低、能够追踪各种 L. hongkongensis 菌株群的来源以及指示遗传特征的优点。