Suppr超能文献

AutoAMS:基于自动化注意力的多模态图学习架构搜索。

AutoAMS: Automated attention-based multi-modal graph learning architecture search.

机构信息

School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.

School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.

出版信息

Neural Netw. 2024 Nov;179:106427. doi: 10.1016/j.neunet.2024.106427. Epub 2024 Jun 22.

Abstract

Multi-modal attention mechanisms have been successfully used in multi-modal graph learning for various tasks. However, existing attention-based multi-modal graph learning (AMGL) architectures heavily rely on manual design, requiring huge effort and expert experience. Meanwhile, graph neural architecture search (GNAS) has made great progress toward automatically designing graph-based learning architectures. However, it is challenging to directly adopt existing GNAS methods to search for better AMGL architectures because of the search spaces that only focus on designing graph neural network architectures and the search objective that ignores multi-modal interactive information between modalities and long-term content dependencies within different modalities. To address these issues, we propose an automated attention-based multi-modal graph learning architecture search (AutoAMS) framework, which can automatically design the optimal AMGL architectures for different multi-modal tasks. Specifically, we design an effective attention-based multi-modal (AM) search space consisting of four sub-spaces, which can jointly support the automatic search of multi-modal attention representation and other components of multi-modal graph learning architecture. In addition, a novel search objective based on an unsupervised multi-modal reconstruction loss and task-specific loss is introduced to search and train AMGL architectures. The search objective can extract the global features and capture multi-modal interactions from multiple modalities. The experimental results on multi-modal tasks show strong evidence that AutoAMS is capable of designing high-performance AMGL architectures.

摘要

多模态注意力机制已成功应用于多模态图学习的各种任务中。然而,现有的基于注意力的多模态图学习 (AMGL) 架构严重依赖于手动设计,需要大量的努力和专家经验。同时,图神经架构搜索 (GNAS) 在自动设计基于图的学习架构方面取得了重大进展。然而,由于搜索空间仅关注于设计图神经网络架构,以及搜索目标忽略了模态之间的多模态交互信息和不同模态内部的长期内容依赖关系,因此直接采用现有的 GNAS 方法来搜索更好的 AMGL 架构具有挑战性。为了解决这些问题,我们提出了一种自动化基于注意力的多模态图学习架构搜索 (AutoAMS) 框架,该框架可以为不同的多模态任务自动设计最佳的 AMGL 架构。具体来说,我们设计了一个有效的基于注意力的多模态 (AM) 搜索空间,该空间由四个子空间组成,可以共同支持多模态注意力表示和多模态图学习架构的其他组件的自动搜索。此外,引入了一种基于无监督多模态重建损失和任务特定损失的新搜索目标,以搜索和训练 AMGL 架构。搜索目标可以从多个模态中提取全局特征并捕获多模态交互。在多模态任务上的实验结果有力地证明了 AutoAMS 能够设计高性能的 AMGL 架构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验