Suppr超能文献

生成用于计算机建模研究的合成信号网络。

Generating synthetic signaling networks for in silico modeling studies.

机构信息

Department of Bioengineering, University of Washington, Seattle 98195, WA, USA.

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland 99352, WA, USA.

出版信息

J Theor Biol. 2024 Oct 7;593:111901. doi: 10.1016/j.jtbi.2024.111901. Epub 2024 Jul 14.

Abstract

Predictive models of signaling pathways have proven to be difficult to develop. Traditional approaches to developing mechanistic models rely on collecting experimental data and fitting a single model to that data. This approach works for simple systems but has proven unreliable for complex systems such as biological signaling networks. Thus, there is a need to develop new approaches to create predictive mechanistic models of complex systems. To meet this need, we developed a method for generating artificial signaling networks that were reasonably realistic and thus could be treated as ground truth models. These synthetic models could then be used to generate synthetic data for developing and testing algorithms designed to recover the underlying network topology and associated parameters. We defined the reaction degree and reaction distance to measure the topology of reaction networks, especially to consider enzymes. To determine whether our generated signaling networks displayed meaningful behavior, we compared them with signaling networks from the BioModels Database. This comparison indicated that our generated signaling networks had high topological similarities with BioModels signaling networks with respect to the reaction degree and distance distributions. In addition, our synthetic signaling networks had similar behavioral dynamics with respect to both steady states and oscillations, suggesting that our method generated synthetic signaling networks comparable with BioModels and thus could be useful for building network evaluation tools.

摘要

预测信号通路的模型一直很难开发。传统的开发机制模型的方法依赖于收集实验数据,并将单一模型拟合到该数据上。这种方法适用于简单的系统,但对于复杂的系统(如生物信号网络)来说已经被证明是不可靠的。因此,需要开发新的方法来创建复杂系统的预测性机制模型。为了满足这一需求,我们开发了一种生成人工信号网络的方法,这些网络具有相当的现实性,因此可以作为真实模型。然后可以使用这些合成模型生成用于开发和测试算法的数据,这些算法旨在恢复底层网络拓扑结构和相关参数。我们定义了反应度和反应距离来测量反应网络的拓扑结构,特别是要考虑酶。为了确定我们生成的信号网络是否表现出有意义的行为,我们将它们与 BioModels 数据库中的信号网络进行了比较。该比较表明,我们生成的信号网络在反应度和距离分布方面与 BioModels 信号网络具有高度的拓扑相似性。此外,我们的合成信号网络在稳态和振荡方面具有相似的动态行为,这表明我们的方法生成的合成信号网络与 BioModels 相当,因此可用于构建网络评估工具。

相似文献

1
Generating synthetic signaling networks for in silico modeling studies.生成用于计算机建模研究的合成信号网络。
J Theor Biol. 2024 Oct 7;593:111901. doi: 10.1016/j.jtbi.2024.111901. Epub 2024 Jul 14.
7
Biological pathway kinetic rate constants are scale-invariant.生物途径动力学速率常数是尺度不变的。
Bioinformatics. 2008 Mar 15;24(6):741-3. doi: 10.1093/bioinformatics/btn041. Epub 2008 Jan 30.
9
SobolHDMR: a general-purpose modeling software.SobolHDMR:一款通用建模软件。
Methods Mol Biol. 2013;1073:191-224. doi: 10.1007/978-1-62703-625-2_16.

本文引用的文献

2
Gene regulatory network inference in the era of single-cell multi-omics.单细胞多组学时代的基因调控网络推断
Nat Rev Genet. 2023 Nov;24(11):739-754. doi: 10.1038/s41576-023-00618-5. Epub 2023 Jun 26.
4
Julia for biologists.生物学领域的 Julia。
Nat Methods. 2023 May;20(5):655-664. doi: 10.1038/s41592-023-01832-z. Epub 2023 Apr 6.
5
Cesium: A public database of evolved oscillatory reaction networks.铯:进化振荡反应网络的公共数据库。
Biosystems. 2023 Feb;224:104836. doi: 10.1016/j.biosystems.2023.104836. Epub 2023 Jan 11.
7
8
Analyzing causal relationships in proteomic profiles using CausalPath.使用 CausalPath 分析蛋白质组学谱中的因果关系。
STAR Protoc. 2021 Nov 23;2(4):100955. doi: 10.1016/j.xpro.2021.100955. eCollection 2021 Dec 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验