Suppr超能文献

解析阿尔茨海默病中的脑萎缩异质性:一种具有可解释潜在空间的深度自监督方法。

Disentangling brain atrophy heterogeneity in Alzheimer's disease: A deep self-supervised approach with interpretable latent space.

作者信息

Kang Sohyun, Kim Sung-Woo, Seong Joon-Kyung

机构信息

Department of Artificial Intelligence, College of Informatics, Korea University, Seoul, 02841, South Korea.

School of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, South Korea; Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, 26426, South Korea; Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, 26426, South Korea.

出版信息

Neuroimage. 2024 Aug 15;297:120737. doi: 10.1016/j.neuroimage.2024.120737. Epub 2024 Jul 14.

Abstract

Alzheimer's disease (AD) is heterogeneous, but existing methods for capturing this heterogeneity through dimensionality reduction and unsupervised clustering have limitations when it comes to extracting intricate atrophy patterns. In this study, we propose a deep learning based self-supervised framework that characterizes complex atrophy features using latent space representation. It integrates feature engineering, classification, and clustering to synergistically disentangle heterogeneity in Alzheimer's disease. Through this representation learning, we trained a clustered latent space with distinct atrophy patterns and clinical characteristics in AD, and replicated the findings in prodromal Alzheimer's disease. Moreover, we discovered that these clusters are not solely attributed to subtypes but also reflect disease progression in the latent space, representing the core dimensions of heterogeneity, namely progression and subtypes. Furthermore, longitudinal latent space analysis revealed two distinct disease progression pathways: medial temporal and parietotemporal pathways. The proposed approach enables effective latent representations that can be integrated with individual-level cognitive profiles, thereby facilitating a comprehensive understanding of AD heterogeneity.

摘要

阿尔茨海默病(AD)具有异质性,但现有的通过降维和无监督聚类来捕捉这种异质性的方法在提取复杂的萎缩模式时存在局限性。在本研究中,我们提出了一种基于深度学习的自监督框架,该框架使用潜在空间表示来表征复杂的萎缩特征。它整合了特征工程、分类和聚类,以协同解开阿尔茨海默病中的异质性。通过这种表示学习,我们在AD中训练了一个具有不同萎缩模式和临床特征的聚类潜在空间,并在前驱性阿尔茨海默病中复制了这些发现。此外,我们发现这些聚类不仅归因于亚型,还反映了潜在空间中的疾病进展,代表了异质性的核心维度,即进展和亚型。此外,纵向潜在空间分析揭示了两条不同的疾病进展途径:内侧颞叶途径和顶颞叶途径。所提出的方法能够实现有效的潜在表示,可与个体水平的认知概况相结合,从而有助于全面理解AD的异质性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验