Suppr超能文献

通过将数据和背景知识与人工智能希尔伯特系统相结合来推动科学发现的不断发展。

Evolving scientific discovery by unifying data and background knowledge with AI Hilbert.

作者信息

Cory-Wright Ryan, Cornelio Cristina, Dash Sanjeeb, El Khadir Bachir, Horesh Lior

机构信息

Department of Analytics, Marketing and Operations, Imperial College Business School, London, UK.

Samsung AI, Cambridge, UK.

出版信息

Nat Commun. 2024 Jul 14;15(1):5922. doi: 10.1038/s41467-024-50074-w.

Abstract

The discovery of scientific formulae that parsimoniously explain natural phenomena and align with existing background theory is a key goal in science. Historically, scientists have derived natural laws by manipulating equations based on existing knowledge, forming new equations, and verifying them experimentally. However, this does not include experimental data within the discovery process, which may be inefficient. We propose a solution to this problem when all axioms and scientific laws are expressible as polynomials and argue our approach is widely applicable. We model notions of minimal complexity using binary variables and logical constraints, solve polynomial optimization problems via mixed-integer linear or semidefinite optimization, and prove the validity of our scientific discoveries in a principled manner using Positivstellensatz certificates. We demonstrate that some famous scientific laws, including Kepler's Law of Planetary Motion and the Radiated Gravitational Wave Power equation, can be derived in a principled manner from axioms and experimental data.

摘要

发现能够简洁地解释自然现象并与现有背景理论相符的科学公式是科学领域的一个关键目标。从历史上看,科学家们通过基于现有知识操纵方程式、形成新方程式并进行实验验证来推导出自然规律。然而,这在发现过程中并未纳入实验数据,可能效率不高。当所有公理和科学定律都可以表示为多项式时,我们针对此问题提出了一种解决方案,并认为我们的方法具有广泛的适用性。我们使用二元变量和逻辑约束对最小复杂度的概念进行建模,通过混合整数线性或半定优化来解决多项式优化问题,并使用正定性定理证书以有原则的方式证明我们科学发现的有效性。我们证明了一些著名的科学定律,包括开普勒行星运动定律和辐射引力波功率方程,可以从公理和实验数据中有原则地推导出来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4b8/11247103/5538919534cb/41467_2024_50074_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验