Ashhab Sahel
Advanced ICT Institute, National Institute of Information and Communications Technology, 4-2-1, Nukuikitamachi, Koganei, Tokyo 184-8795, Japan.
Heliyon. 2024 Mar 18;10(6):e28124. doi: 10.1016/j.heliyon.2024.e28124. eCollection 2024 Mar 30.
We investigate the use of machine learning for solving analytic problems in theoretical physics. In particular, symbolic regression (SR) is making rapid progress in recent years as a tool to fit data using functions whose overall form is not known in advance. Assuming that we have a mathematical problem that is posed analytically, e.g. through equations, but allows easy numerical evaluation of the solution for any given set of input variable values, one can generate data numerically and then use SR to identify the closed-form function that describes the data, assuming that such a function exists. In addition to providing a concise way to represent the solution of the problem, such an obtained function can play a key role in providing insight and allow us to find an intuitive explanation for the studied phenomenon. We use a state-of-the-art SR package to demonstrate how an exact solution can be found and make an attempt at solving an unsolved physics problem. We use the Landau-Zener problem and a few of its generalizations as examples to motivate our approach and illustrate how the calculations become increasingly complicated with increasing problem difficulty. Our results highlight the capabilities and limitations of the presently available SR packages, and they point to possible modifications of these packages to make them better suited for the purpose of finding exact solutions as opposed to good approximations. Our results also demonstrate the potential for machine learning to tackle analytically posed problems in theoretical physics.
我们研究如何利用机器学习来解决理论物理中的分析问题。特别是,符号回归(SR)近年来作为一种使用事先未知其整体形式的函数来拟合数据的工具取得了快速进展。假设我们有一个通过方程等方式以解析形式提出的数学问题,但对于任何给定的输入变量值集都允许对解进行轻松的数值评估,那么人们可以通过数值方式生成数据,然后使用符号回归来识别描述该数据的封闭形式函数,前提是这样的函数存在。除了提供一种简洁的方式来表示问题的解之外,这样得到的函数在提供洞察力以及让我们找到所研究现象的直观解释方面可以发挥关键作用。我们使用一个最先进的符号回归软件包来演示如何找到精确解,并尝试解决一个未解决的物理问题。我们以朗道 - 齐纳问题及其一些推广为例来推动我们的方法,并说明随着问题难度的增加计算是如何变得越来越复杂的。我们的结果突出了当前可用符号回归软件包的能力和局限性,并指出了对这些软件包可能的修改方向,以使它们更适合用于找到精确解而非良好近似的目的。我们的结果还展示了机器学习在解决理论物理中以解析形式提出的问题方面的潜力。