Oncobell Division, Bellvitge Biomedical Research Institute (IDIBELL) and ProCURE Department, Catalan Institute of Oncology (ICO), Barcelona, Spain.
Center for Cancer Drug Discovery, The Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK.
Expert Opin Drug Discov. 2024 Sep;19(9):1043-1069. doi: 10.1080/17460441.2024.2376643. Epub 2024 Jul 14.
Small molecules often bind to multiple targets, a behavior termed polypharmacology. Anticipating polypharmacology is essential for drug discovery since unknown off-targets can modulate safety and efficacy - profoundly affecting drug discovery success. Unfortunately, experimental methods to assess selectivity present significant limitations and drugs still fail in the clinic due to unanticipated off-targets. Computational methods are a cost-effective, complementary approach to predict polypharmacology.
This review aims to provide a comprehensive overview of the state of polypharmacology prediction and discuss its strengths and limitations, covering both classical cheminformatics methods and bioinformatic approaches. The authors review available data sources, paying close attention to their different coverage. The authors then discuss major algorithms grouped by the types of data that they exploit using selected examples.
Polypharmacology prediction has made impressive progress over the last decades and contributed to identify many off-targets. However, data incompleteness currently limits most approaches to comprehensively predict selectivity. Moreover, our limited agreement on model assessment challenges the identification of the best algorithms - which at present show modest performance in prospective real-world applications. Despite these limitations, the exponential increase of multidisciplinary Big Data and AI hold much potential to better polypharmacology prediction and de-risk drug discovery.
小分子通常会与多个靶点结合,这种行为被称为多药理学。由于未知的非靶点可能会调节安全性和疗效,从而深刻影响药物发现的成功,因此预测多药理学对于药物发现至关重要。不幸的是,评估选择性的实验方法存在很大的局限性,而且由于意外的非靶点,药物仍会在临床上失败。计算方法是一种具有成本效益的、预测多药理学的补充方法。
本综述旨在全面概述多药理学预测的现状,并讨论其优缺点,涵盖经典的化学信息学方法和生物信息学方法。作者回顾了现有的数据源,特别注意它们的不同覆盖范围。然后,作者根据它们利用的数据类型将主要算法进行分组,并使用选定的示例进行讨论。
在过去几十年中,多药理学预测取得了令人瞩目的进展,并有助于确定许多非靶点。然而,目前数据的不完整性限制了大多数方法全面预测选择性。此外,我们对模型评估的一致性有限,这使得难以确定最佳算法——目前在实际应用的前瞻性研究中表现出中等性能。尽管存在这些局限性,但多学科大数据和人工智能的指数级增长有望更好地预测多药理学并降低药物发现的风险。