Suppr超能文献

小分子的计算机辅助靶点预测

In Silico Target Prediction for Small Molecules.

作者信息

Byrne Ryan, Schneider Gisbert

机构信息

Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.

出版信息

Methods Mol Biol. 2019;1888:273-309. doi: 10.1007/978-1-4939-8891-4_16.

Abstract

Drugs modulate disease states through their actions on targets in the body. Determining these targets aids the focused development of new treatments, and helps to better characterize those already employed. One means of accomplishing this is through the deployment of in silico methodologies, harnessing computational analytical and predictive power to produce educated hypotheses for experimental verification. Here, we provide an overview of the current state of the art, describe some of the well-established methods in detail, and reflect on how they, and emerging technologies promoting the incorporation of complex and heterogeneous data-sets, can be employed to improve our understanding of (poly)pharmacology.

摘要

药物通过作用于体内靶点来调节疾病状态。确定这些靶点有助于新疗法的针对性研发,并有助于更好地描述已使用疗法的特征。实现这一目标的一种方法是通过部署计算机模拟方法,利用计算分析和预测能力来生成有根据的假设以供实验验证。在此,我们概述了当前的技术水平,详细描述了一些成熟的方法,并思考如何利用这些方法以及促进纳入复杂和异构数据集的新兴技术来增进我们对(多)药理学的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验