VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.
Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
Brain Inj. 2024 Nov 9;38(13):1084-1092. doi: 10.1080/02699052.2024.2373920. Epub 2024 Jul 14.
The purpose of this study was to develop and validate an algorithm for identifying Veterans with a history of traumatic brain injury (TBI) in the Veterans Affairs (VA) electronic health record using VA Million Veteran Program (MVP) data. Manual chart review ( = 200) was first used to establish 'gold standard' diagnosis labels for TBI ('Yes TBI' vs. 'No TBI'). To develop our algorithm, we used PheCAP, a semi-supervised pipeline that relied on the chart review diagnosis labels to train and create a prediction model for TBI. Cross-validation was used to train and evaluate the proposed algorithm, 'TBI-PheCAP.' TBI-PheCAP performance was compared to existing TBI algorithms and phenotyping methods, and the final algorithm was run on all MVP participants ( = 702,740) to assign a predicted probability for TBI and a binary classification status choosing specificity = 90%. The TBI-PheCAP algorithm had an area under the receiver operating characteristic curve of 0.92, sensitivity of 84%, and positive predictive value (PPV) of 98% at specificity = 90%. TBI-PheCAP generally performed better than other classification methods, with equivalent or higher sensitivity and PPV than existing rules-based TBI algorithms and MVP TBI-related survey data. Given its strong classification metrics, the TBI-PheCAP algorithm is recommended for use in future population-based TBI research.
本研究的目的是利用退伍军人事务部(VA)百万退伍军人计划(MVP)的数据,开发和验证一种在 VA 电子健康记录中识别有创伤性脑损伤(TBI)病史的退伍军人的算法。首先,使用手动图表审查( = 200)来建立 TBI 的“黄金标准”诊断标签(“有 TBI”与“无 TBI”)。为了开发我们的算法,我们使用了 PheCAP,这是一种半监督的管道,依赖于图表审查诊断标签来训练和创建 TBI 的预测模型。交叉验证用于训练和评估拟议的算法“TBI-PheCAP”。将 TBI-PheCAP 的性能与现有的 TBI 算法和表型方法进行比较,并将最终算法应用于所有 MVP 参与者( = 702,740),以分配 TBI 的预测概率和选择特异性 = 90%的二进制分类状态。TBI-PheCAP 算法的接收器操作特征曲线下面积为 0.92,特异性 = 90%时的灵敏度为 84%,阳性预测值(PPV)为 98%。TBI-PheCAP 通常比其他分类方法表现更好,具有与基于规则的 TBI 算法和 MVP 与 TBI 相关的调查数据相当或更高的灵敏度和 PPV。鉴于其强大的分类指标,TBI-PheCAP 算法推荐用于未来基于人群的 TBI 研究。