Suppr超能文献

基于电子健康记录的 VA 中 TBI 识别算法的开发和验证:VA 百万老兵计划研究。

Development and validation of an electronic health record-based algorithm for identifying TBI in the VA: A VA Million Veteran Program study.

机构信息

VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.

出版信息

Brain Inj. 2024 Nov 9;38(13):1084-1092. doi: 10.1080/02699052.2024.2373920. Epub 2024 Jul 14.

Abstract

The purpose of this study was to develop and validate an algorithm for identifying Veterans with a history of traumatic brain injury (TBI) in the Veterans Affairs (VA) electronic health record using VA Million Veteran Program (MVP) data. Manual chart review ( = 200) was first used to establish 'gold standard' diagnosis labels for TBI ('Yes TBI' vs. 'No TBI'). To develop our algorithm, we used PheCAP, a semi-supervised pipeline that relied on the chart review diagnosis labels to train and create a prediction model for TBI. Cross-validation was used to train and evaluate the proposed algorithm, 'TBI-PheCAP.' TBI-PheCAP performance was compared to existing TBI algorithms and phenotyping methods, and the final algorithm was run on all MVP participants ( = 702,740) to assign a predicted probability for TBI and a binary classification status choosing specificity = 90%. The TBI-PheCAP algorithm had an area under the receiver operating characteristic curve of 0.92, sensitivity of 84%, and positive predictive value (PPV) of 98% at specificity = 90%. TBI-PheCAP generally performed better than other classification methods, with equivalent or higher sensitivity and PPV than existing rules-based TBI algorithms and MVP TBI-related survey data. Given its strong classification metrics, the TBI-PheCAP algorithm is recommended for use in future population-based TBI research.

摘要

本研究的目的是利用退伍军人事务部(VA)百万退伍军人计划(MVP)的数据,开发和验证一种在 VA 电子健康记录中识别有创伤性脑损伤(TBI)病史的退伍军人的算法。首先,使用手动图表审查( = 200)来建立 TBI 的“黄金标准”诊断标签(“有 TBI”与“无 TBI”)。为了开发我们的算法,我们使用了 PheCAP,这是一种半监督的管道,依赖于图表审查诊断标签来训练和创建 TBI 的预测模型。交叉验证用于训练和评估拟议的算法“TBI-PheCAP”。将 TBI-PheCAP 的性能与现有的 TBI 算法和表型方法进行比较,并将最终算法应用于所有 MVP 参与者( = 702,740),以分配 TBI 的预测概率和选择特异性 = 90%的二进制分类状态。TBI-PheCAP 算法的接收器操作特征曲线下面积为 0.92,特异性 = 90%时的灵敏度为 84%,阳性预测值(PPV)为 98%。TBI-PheCAP 通常比其他分类方法表现更好,具有与基于规则的 TBI 算法和 MVP 与 TBI 相关的调查数据相当或更高的灵敏度和 PPV。鉴于其强大的分类指标,TBI-PheCAP 算法推荐用于未来基于人群的 TBI 研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验