Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
Center of Innovation in Long Term Services and Supports, Providence VAMC, Providence, RI, USA.
Ophthalmic Epidemiol. 2022 Dec;29(6):640-648. doi: 10.1080/09286586.2021.1992784. Epub 2021 Nov 25.
The availability of electronic health record (EHR)-linked biobank data for research presents opportunities to better understand complex ocular diseases. Developing accurate computable phenotypes for ocular diseases for which gold standard diagnosis includes imaging remains inaccessible in most biobank-linked EHRs. The objective of this study was to develop and validate a computable phenotype to identify primary open-angle glaucoma (POAG) through accessing the Department of Veterans Affairs (VA) Computerized Patient Record System (CPRS) and Million Veteran Program (MVP) biobank. Accessing CPRS clinical ophthalmology data from VA Medical Center Eye Clinic (VAMCEC) patients, we developed and iteratively refined POAG case and control algorithms based on clinical, prescription, and structured diagnosis data (ICD-CM codes). Refinement was performed via detailed chart review, initially at a single VAMCEC (n = 200) and validated at two additional VAMCECs (n = 100 each). Positive and negative predictive values (PPV, NPV) were computed as the proportion of CPRS patients correctly classified with POAG or without POAG, respectively, by the algorithms, validated by ophthalmologists and optometrists with access to gold-standard clinical diagnosis data. The final algorithms performed better than previously reported approaches in assuring the accuracy and reproducibility of POAG classification (PPV >83% and NPV >97%) with consistent performance in Black or African American and in White Veterans. Applied to the MVP to identify cases and controls, genetic analysis of a known POAG-associated locus further validated the algorithms. We conclude that ours is a viable approach to use combined EHR-genetic data to study patients with complex diseases that require imaging confirmation.
电子健康记录 (EHR) 链接的生物库数据可用于研究,为更好地了解复杂的眼部疾病提供了机会。在大多数链接 EHR 的生物库中,对于那些金标准诊断包括成像的眼部疾病,开发准确的可计算表型仍然难以实现。本研究的目的是开发和验证一种可计算的表型,通过访问退伍军人事务部 (VA) 计算机化患者记录系统 (CPRS) 和百万退伍军人计划 (MVP) 生物库来识别原发性开角型青光眼 (POAG)。我们从 VA 医疗中心眼科诊所 (VAMCEC) 的患者中获取 CPRS 临床眼科数据,基于临床、处方和结构化诊断数据 (ICD-CM 代码) 开发和迭代 POAG 病例和对照算法。通过详细的图表审查进行改进,最初在单个 VAMCEC (n=200) 进行,并在另外两个 VAMCEC (每个 n=100) 进行验证。阳性预测值 (PPV) 和阴性预测值 (NPV) 分别计算为算法正确分类为 POAG 或无 POAG 的 CPRS 患者的比例,由眼科医生和验光师验证,他们可以访问金标准临床诊断数据。最终的算法在确保 POAG 分类的准确性和可重复性方面表现优于以前的方法 (PPV>83%,NPV>97%),并且在黑人和非裔美国人和白人退伍军人中表现一致。将其应用于 MVP 以识别病例和对照,对已知与 POAG 相关的基因座的遗传分析进一步验证了这些算法。我们得出结论,我们的方法是一种可行的方法,可用于使用 EHR-遗传数据联合研究需要成像确认的复杂疾病患者。