Suppr超能文献

由基因旁系同源物对驱动的癌症免疫疗法合成反应的灵敏检测

Sensitive detection of synthetic response to cancer immunotherapy driven by gene paralog pairs.

作者信息

Dong Chuanpeng, Zhang Feifei, He Emily, Ren Ping, Verma Nipun, Zhu Xinxin, Feng Di, Zhao Hongyu, Chen Sidi

机构信息

Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.

System Biology Institute, Yale University, West Haven, CT, USA.

出版信息

bioRxiv. 2024 Jul 4:2024.07.02.601809. doi: 10.1101/2024.07.02.601809.

Abstract

Emerging immunotherapies such as immune checkpoint blockade (ICB) and chimeric antigen receptor T-cell (CAR-T) therapy have revolutionized cancer treatment and have improved the survival of patients with multiple cancer types. Despite this success many patients are unresponsive to these treatments or relapse following treatment. CRISPR activation and knockout (KO) screens have been used to identify novel single gene targets that can enhance effector T cell function and promote immune cell targeting and eradication of tumors. However, cancer cells often employ multiple genes to promote an immunosuppressive pathway and thus modulating individual genes often has a limited effect. Paralogs are genes that originate from common ancestors and retain similar functions. They often have complex effects on a particular phenotype depending on factors like gene family similarity, each individual gene's expression and the physiological or pathological context. Some paralogs exhibit synthetic lethal interactions in cancer cell survival; however, a thorough investigation of paralog pairs that could enhance the efficacy of cancer immunotherapy is lacking. Here we introduce a sensitive computational approach that uses sgRNA sets enrichment analysis to identify cancer-intrinsic paralog pairs which have the potential to synergistically enhance T cell-mediated tumor destruction. We have further developed an ensemble learning model that uses an XGBoost classifier and incorporates features such as gene characteristics, sequence and structural similarities, protein-protein interaction (PPI) networks, and gene coevolution data to predict paralog pairs that are likely to enhance immunotherapy efficacy. We experimentally validated the functional significance of these predicted paralog pairs using double knockout (DKO) of identified paralog gene pairs as compared to single gene knockouts (SKOs). These data and analyses collectively provide a sensitive approach to identify previously undetected paralog pairs that can enhance cancer immunotherapy even when individual genes within the pair has a limited effect.

摘要

新兴的免疫疗法,如免疫检查点阻断(ICB)和嵌合抗原受体T细胞(CAR-T)疗法,已经彻底改变了癌症治疗方式,并提高了多种癌症类型患者的生存率。尽管取得了这一成功,但许多患者对这些治疗无反应或在治疗后复发。CRISPR激活和敲除(KO)筛选已被用于识别新的单基因靶点,这些靶点可以增强效应T细胞功能,并促进免疫细胞靶向和根除肿瘤。然而,癌细胞通常利用多个基因来促进免疫抑制途径,因此调节单个基因的效果往往有限。旁系同源基因是起源于共同祖先并保留相似功能的基因。它们通常对特定表型具有复杂的影响,这取决于基因家族相似性、每个个体基因的表达以及生理或病理背景等因素。一些旁系同源基因在癌细胞存活中表现出合成致死相互作用;然而,目前缺乏对可能增强癌症免疫治疗疗效的旁系同源基因对的全面研究。在这里,我们引入了一种灵敏的计算方法,该方法使用sgRNA集富集分析来识别具有协同增强T细胞介导的肿瘤破坏潜力的癌症内在旁系同源基因对。我们进一步开发了一种集成学习模型,该模型使用XGBoost分类器,并纳入基因特征、序列和结构相似性、蛋白质-蛋白质相互作用(PPI)网络和基因共进化数据等特征,以预测可能增强免疫治疗疗效的旁系同源基因对。与单基因敲除(SKO)相比,我们通过对已识别的旁系同源基因对进行双敲除(DKO),实验验证了这些预测的旁系同源基因对的功能意义。这些数据和分析共同提供了一种灵敏的方法,以识别以前未检测到的旁系同源基因对,即使该对中的单个基因作用有限,这些旁系同源基因对也可以增强癌症免疫治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cea9/11245041/21fb255fc841/nihpp-2024.07.02.601809v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验