Sung Chun-Yen, Kadiyala Usha, Blanchard Owen, Yourston Liam, Walker Derek, Li Linyuan, Fu Jianping, Yang Qiong
Department of Biophysics, University of Michigan, Ann Arbor, MI 48109.
Department of Physics, University of Michigan, Ann Arbor, MI 48109.
bioRxiv. 2024 Jul 4:2024.07.02.601712. doi: 10.1101/2024.07.02.601712.
The segmentation clock, a genetic oscillator in the presomitic mesoderm (PSM), is known to be influenced by biochemical signals, yet its potential regulation by mechanical cues remains unclear. The complex PSM microenvironment has made it challenging to isolate the effects of mechanical perturbations on clock behavior. Here we investigated how mechanical stimuli affect clock oscillations by culturing zebrafish PSM cells on PDMS micropost arrays with tunable rigidities (0.6-1200 kPa). We observed an inverse sigmoidal relationship between surface rigidity and both the percentage of oscillating cells and the number of oscillation cycles, with a switching threshold between 3-6 kPa. The periods of oscillating cells showed a consistently broad distribution across rigidity changes. Moreover, these cells exhibited distinct biophysical properties, such as reduced motility, contractility, and sustained circularity. These findings highlight the crucial role of cell-substrate interactions in regulating segmentation clock behavior, providing insights into the mechanobiology of somitogenesis.
体节时钟是位于前体节中胚层(PSM)的一种基因振荡器,已知其受生化信号影响,但其受机械信号潜在调控的情况仍不清楚。复杂的PSM微环境使得分离机械扰动对时钟行为的影响具有挑战性。在此,我们通过在具有可调刚度(0.6 - 1200 kPa)的聚二甲基硅氧烷(PDMS)微柱阵列上培养斑马鱼PSM细胞,研究了机械刺激如何影响时钟振荡。我们观察到表面刚度与振荡细胞百分比和振荡周期数之间呈反S形关系,转换阈值在3 - 6 kPa之间。振荡细胞的周期在刚度变化范围内始终呈现出较宽的分布。此外,这些细胞表现出不同的生物物理特性,如运动性降低、收缩性降低和持续的圆形度。这些发现突出了细胞 - 底物相互作用在调节体节时钟行为中的关键作用,为体节发生的力学生物学提供了见解。