Suppr超能文献

利用近红外光谱结合化学计量学预测咖啡发酵过程中pH值和总可溶性固形物的变化

Predicting the evolution of pH and total soluble solids during coffee fermentation using near-infrared spectroscopy coupled with chemometrics.

作者信息

Tirado-Kulieva Vicente, Quijano-Jara Carlos, Avila-George Himer, Castro Wilson

机构信息

Instituto de Investigación para el Desarrollo Sostenible y Cambio Climático, Universidad Nacional de Frontera, Sullana, 20100, Piura, Peru.

Escuela de Posgrado, Universidad Nacional de Trujillo, Trujillo, Peru.

出版信息

Curr Res Food Sci. 2024 Jun 17;9:100788. doi: 10.1016/j.crfs.2024.100788. eCollection 2024.

Abstract

Currently, coffee fermentation is visually operated, which results in incomplete or excessive processes and coffees with undesirable characteristics. In front of it, pH and total soluble solids (TSS) have been shown to be good fermentation indicators, although this requires rapid, accurate, and chemical-free measurement techniques such as NIR spectroscopy. However, the complexity of the NIR spectra requires optimization steps in which variable selection techniques simplify profiles and subsequent models. This work tests a new covering array feature selection (CAFS) approach on NIR spectra to optimize prediction models in coffee samples during fermentation. Spectral profiles in the range 1100-2100 nm were extracted from coffee beans (Typica, Caturra, and Catimor varieties) raw and during fermentation (4, 8, 12, 16, 20, and 24 h). Partial least-squares regressions (PLSR) were performed using full spectra using a five-fold cross-validation strategy for training and validation. The relevant wavelengths were then selected using the coefficients, the important projection of variables (VIP), and the CAFS method. Finally, optimized models were performed using the relevant wavelengths and compared among these using their statistical metrics. The models performed using the selected variables (22-47) of CAFS showed the best performance in predicting pH (  = 0.825-0.903, RMSE = 0.096-0.158, RPD = 6.33-10.38) and TSS (  = 0.865-0.922, RMSE = 0.688-1.059, RPD = 0.94-1.45) compared to the other methods. These findings suggest that simple and efficient models could be performed and implemented in routine analysis due to the maximum coverage and minimum cardinality of CAFS.

摘要

目前,咖啡发酵过程是靠肉眼操作的,这导致发酵过程不完整或过度,产出的咖啡具有不良特性。在此之前,pH值和总可溶性固形物(TSS)已被证明是良好的发酵指标,不过这需要快速、准确且无需化学试剂的测量技术,如近红外光谱法。然而,近红外光谱的复杂性需要进行优化步骤,其中变量选择技术可简化光谱轮廓及后续模型。本研究在近红外光谱上测试了一种新的覆盖阵列特征选择(CAFS)方法,以优化咖啡样品发酵过程中的预测模型。从生咖啡豆(Typica、Caturra和Catimor品种)以及发酵过程中(4、8、12、16、20和24小时)提取1100 - 2100纳米范围内的光谱轮廓。使用全光谱进行偏最小二乘回归(PLSR),采用五折交叉验证策略进行训练和验证。然后使用系数、变量的重要投影(VIP)和CAFS方法选择相关波长。最后,使用相关波长建立优化模型,并通过统计指标对这些模型进行比较。与其他方法相比,使用CAFS选择的变量(22 - 47个)建立的模型在预测pH值(R² = 0.825 - 0.903,RMSE = 0.096 - 0.158,RPD = 6.33 - 10.38)和TSS(R² = 0.865 - 0.922,RMSE = 0.688 - 1.059,RPD = 0.94 - 1.45)方面表现最佳。这些发现表明,由于CAFS的最大覆盖度和最小基数,可在常规分析中建立并实施简单高效的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99fe/11245949/90bf0bc0e18a/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验