Jussila Topias, Philip Anish, Rubio-Giménez Víctor, Eklund Kim, Vasala Sami, Glatzel Pieter, Lindén Johan, Motohashi Teruki, Karttunen Antti J, Ameloot Rob, Karppinen Maarit
Department of Chemistry and Materials Science, Aalto University, FI-00076 Aalto, Finland.
Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), Katholieke Universiteit Leuven, 3001 Leuven, Belgium.
Chem Mater. 2024 Jun 25;36(13):6489-6503. doi: 10.1021/acs.chemmater.4c00555. eCollection 2024 Jul 9.
Advanced deposition routes are vital for the growth of functional metal-organic thin films. The gas-phase atomic/molecular layer deposition (ALD/MLD) technique provides solvent-free and uniform nanoscale thin films with unprecedented thickness control and allows straightforward device integration. Most excitingly, the ALD/MLD technique can enable the in situ growth of novel crystalline metal-organic materials. An exquisite example is iron-terephthalate (Fe-BDC), which is one of the most appealing metal-organic framework (MOF) type materials and thus widely studied in bulk form owing to its attractive potential in photocatalysis, biomedicine, and beyond. Resolving the chemistry and structural features of new thin film materials requires an extended selection of characterization and modeling techniques. Here we demonstrate how the unique features of the ALD/MLD grown in situ crystalline Fe-BDC thin films, different from the bulk Fe-BDC MOFs, can be resolved through techniques such as synchrotron grazing-incidence X-ray diffraction (GIXRD), Mössbauer spectroscopy, and resonant inelastic X-ray scattering (RIXS) and crystal structure predictions. The investigations of the Fe-BDC thin films, containing both trivalent and divalent iron, converge toward a novel crystalline Fe(III)-BDC monoclinic phase with space group 2/ and an amorphous Fe(II)-BDC phase. Finally, we demonstrate the excellent thermal stability of our Fe-BDC thin films.
先进的沉积路线对于功能性金属有机薄膜的生长至关重要。气相原子/分子层沉积(ALD/MLD)技术可提供无溶剂且均匀的纳米级薄膜,具有前所未有的厚度控制能力,并能实现直接的器件集成。最令人兴奋的是,ALD/MLD技术能够原位生长新型晶体金属有机材料。一个精妙的例子是对苯二甲酸铁(Fe-BDC),它是最具吸引力的金属有机框架(MOF)类型材料之一,因其在光催化、生物医药及其他领域具有诱人潜力,故而以块状形式得到广泛研究。解析新型薄膜材料的化学和结构特征需要多种表征和建模技术。在此,我们展示了如何通过同步辐射掠入射X射线衍射(GIXRD)、穆斯堡尔光谱和共振非弹性X射线散射(RIXS)以及晶体结构预测等技术,来解析原位生长的晶体Fe-BDC薄膜与块状Fe-BDC MOF不同的独特特征。对同时含有三价铁和二价铁的Fe-BDC薄膜的研究,汇聚到一种具有空间群2/的新型晶体Fe(III)-BDC单斜相和一种非晶态Fe(II)-BDC相。最后,我们展示了我们的Fe-BDC薄膜具有出色的热稳定性。