Manso Ryan H, Hong Jiyun, Wang Wei, Acharya Prashant, Hoffman Adam S, Tong Xiao, Wang Feng, Greenlee Lauren F, Zhu Yimei, Bare Simon R, Chen Jingyi
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States.
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
Chem Mater. 2024 Jun 21;36(13):6440-6453. doi: 10.1021/acs.chemmater.4c00379. eCollection 2024 Jul 9.
Metal phosphide-containing materials have emerged as a potential candidate of nonprecious metal-based catalysts for alkaline oxygen evolution reaction (OER). While it is known that metal phosphide undergoes structural evolution, considerable debate persists regarding the effects of dynamics on the surface activation and morphological stability of the catalysts. In this study, we synthesize NiP -FeO core-shell nanocatalysts with an amorphous NiP core designed for enhanced OER activity. Using X-ray absorption spectroscopy, we elucidate the local structural changes as a function of the cyclic voltammetry cycles. Our studies suggest that the presence of corner-sharing octahedra in the FeO shell improves structural rigidity through interlayer cross-linking, thereby inhibiting the diffusion of OH/HO. Thus, the FeO shell preserves the amorphous NiP core from rapid oxidation to Ni(PO) and Ni(OH). On the other hand, the incorporation of Ni from the core into the FeO shell facilitates absorption of hydroxide ions for OER. As a result, Ni/Fe(OH) at the surface oxidizes to the active γ-(oxy)hydroxide phase under the applied potentials, promoting OER. This intriguing synergistic behavior holds significance as such a synthetic route involving the FeO shell can be extended to other systems, enabling manipulation of surface adsorption and diffusion of hydroxide ions. These findings also demonstrate that nanomaterials with core-shell morphologies can be tuned to leverage the strength of each metallic component for improved electrochemical activities.
含金属磷化物的材料已成为用于碱性析氧反应(OER)的非贵金属基催化剂的潜在候选材料。虽然已知金属磷化物会发生结构演变,但关于动力学对催化剂表面活化和形态稳定性的影响仍存在相当大的争议。在本研究中,我们合成了具有非晶态NiP核的NiP-FeO核壳纳米催化剂,旨在增强OER活性。利用X射线吸收光谱,我们阐明了作为循环伏安法循环函数的局部结构变化。我们的研究表明,FeO壳中角共享八面体的存在通过层间交联提高了结构刚性,从而抑制了OH/HO的扩散。因此,FeO壳保护非晶态NiP核不被快速氧化成Ni(PO)和Ni(OH)。另一方面,核心中的Ni掺入FeO壳促进了OER中氢氧根离子的吸收。结果,表面的Ni/Fe(OH)在施加电位下氧化成活性γ-(氧)氢氧化物相,促进了OER。这种有趣的协同行为具有重要意义,因为这种涉及FeO壳的合成路线可以扩展到其他系统,从而能够控制氢氧根离子的表面吸附和扩散。这些发现还表明,可以调整具有核壳形态的纳米材料,以利用每种金属组分的优势来提高电化学活性。