Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
Nat Mater. 2021 Sep;20(9):1216-1220. doi: 10.1038/s41563-021-00996-3. Epub 2021 May 6.
Extending the toolbox from mono- to bimetallic catalysts is key in realizing efficient chemical processes. Traditionally, the performance of bimetallic catalysts featuring one active and one selective metal is optimized by varying the metal composition, often resulting in a compromise between the catalytic properties of the two metals. Here we show that by designing the atomic distribution of bimetallic Au-Pd nanocatalysts, we obtain a synergistic catalytic performance in the industrially relevant selective hydrogenation of butadiene. Our single-crystalline Au-core Pd-shell nanorods were up to 50 times more active than their alloyed and monometallic counterparts, while retaining high selectivity. We find a shell-thickness-dependent catalytic activity, indicating that not only the nature of the surface but also several subsurface layers play a crucial role in the catalytic performance, and rationalize this finding using density functional theory calculations. Our results open up an alternative avenue for the structural design of bimetallic catalysts.
将单金属催化剂扩展为双金属催化剂是实现高效化学过程的关键。传统上,通过改变金属组成来优化具有一种活性金属和一种选择性金属的双金属催化剂的性能,这通常导致两种金属的催化性能之间存在折衷。在这里,我们表明,通过设计双金属 Au-Pd 纳米催化剂的原子分布,我们在工业上相关的丁二烯选择性加氢中获得了协同催化性能。我们的单晶 Au 核 Pd 壳纳米棒比其合金和单金属对应物的活性高 50 倍,同时保持高选择性。我们发现催化活性与壳层厚度有关,这表明不仅表面的性质,而且几个次表面层在催化性能中起着至关重要的作用,并使用密度泛函理论计算对这一发现进行了合理化。我们的结果为双金属催化剂的结构设计开辟了一条新的途径。