Salerno Giorgia, Bettucci Ottavia, Manfredi Norberto, Stendardo Luca, Veronese Eleonora, Metrangolo Pierangelo, Abbotto Alessandro
Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR) University of Milano-Bicocca Via Cozzi 55 Milano I-20125 Italy.
Department of Information and Electrical Engineering and Applied Mathematics (DIEM) University of Salerno Invariante 12/B, Via Giovanni Paolo II, 132 Fisciano (SA) I-84084 Italy.
Glob Chall. 2024 Jun 3;8(7):2300345. doi: 10.1002/gch2.202300345. eCollection 2024 Jul.
Electrochemical nitrogen reduction (E-NRR) is one of the most promising approaches to generate green NH. However, scarce ammonia yields and Faradaic efficiencies () still limit their use on a large scale. Thus, efforts are focusing on different E-NRR catalyst structures and formulations. Among present strategies, molecular electrocatalysts such as metal-porphyrins emerge as an encouraging option due to their planar structures which favor the interaction involving the metal center, responsible for adsorption and activation of nitrogen. Nevertheless, the high hydrophobicity of porphyrins limits the aqueous electrolyte-catalyst interaction lowering yields. This work introduces a new class of metal-porphyrin based catalysts, bearing hydrophilic tris(ethyleneglycol) monomethyl ether chains (metal = Cu(II) and CoII)). Experimental results show that the presence of hydrophilic chains significantly increases ammonia yields and , supporting the relevance of fruitful catalyst-electrolyte interactions. This study also investigates the use of hydrophobic branched alkyl chains for comparison, resulting in similar performances with respect to the unsubstituted metal-porphyrin, taken as a reference, further confirming that the appropriate design of electrocatalysts carrying peripheral hydrophilic substituents is able to improve device performances in the generation of green ammonia.
电化学氮还原(E-NRR)是生成绿色氨最具前景的方法之一。然而,氨产量和法拉第效率( )较低,这仍然限制了它们的大规模应用。因此,研究重点集中在不同的E-NRR催化剂结构和配方上。在目前的策略中,金属卟啉等分子电催化剂因其平面结构而成为一个令人鼓舞的选择,这种结构有利于涉及金属中心的相互作用,金属中心负责氮的吸附和活化。然而,卟啉的高疏水性限制了水性电解质与催化剂的相互作用,降低了产量。这项工作引入了一类新型的基于金属卟啉的催化剂,带有亲水性三(乙二醇)单甲醚链(金属 = Cu(II) 和 CoII))。实验结果表明,亲水性链的存在显著提高了氨产量和 ,支持了有效的催化剂-电解质相互作用的相关性。本研究还研究了使用疏水性支链烷基链进行比较,与作为参考的未取代金属卟啉相比,性能相似,进一步证实了带有外围亲水性取代基的电催化剂的适当设计能够提高绿色氨生成中的器件性能。