Suppr超能文献

通过去质子化实现无热解合成用于酸性氧还原的催化剂。

Pyrolysis-Free Synthesized Catalyst towards Acidic Oxygen Reduction by Deprotonation.

作者信息

Zang Ying, Mi Chunxia, Wang Rui, Chen Hong, Peng Peng, Xiang Zhonghua, Zang Shuang-Quan, Mak Thomas C W

机构信息

Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2021 Sep 13;60(38):20865-20871. doi: 10.1002/anie.202106661. Epub 2021 Aug 11.

Abstract

Acidic oxygen reduction is vital for renewable energy devices such as fuel cells. However, many aspects of the catalytic process are still uncertain-especially the large difference in activity in acidic and alkaline media. Thus, the design and synthesis of model catalysts to determine the active centers and the inactivation mechanism are urgently needed. We report a pyrolysis-free synthesis route to fabricate a catalyst (CPF-Fe@NG) for oxygen reduction in acidic conditions. By introducing a deprotonation process, we extended the oxygen reduction reaction (ORR) activity from alkaline to acidic conditions. CPF-Fe@NG demonstrated outstanding performance with a half-wave potential of 853 mV (vs. RHE) and good stability after 10000 cycles in 1 M HClO . The pyrolysis-free route could also be used to assemble fuel cells, with a maximum power density of 126 mW cm . Our findings offer new insights into the ORR process to optimize catalysts for both mechanistic studies and practical applications.

摘要

酸性氧还原对于诸如燃料电池等可再生能源装置至关重要。然而,催化过程的许多方面仍不确定,尤其是在酸性和碱性介质中活性的巨大差异。因此,迫切需要设计和合成模型催化剂以确定活性中心和失活机制。我们报道了一种无热解合成路线来制备用于酸性条件下氧还原的催化剂(CPF-Fe@NG)。通过引入去质子化过程,我们将氧还原反应(ORR)活性从碱性条件扩展到了酸性条件。CPF-Fe@NG在1 M HClO₄中表现出优异的性能,半波电位为853 mV(相对于可逆氢电极),并且在10000次循环后具有良好的稳定性。这种无热解路线还可用于组装燃料电池,最大功率密度为126 mW cm⁻²。我们的研究结果为ORR过程提供了新的见解,有助于为机理研究和实际应用优化催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验