Suppr超能文献

研究信函:使用大语言模型对精神科临床研究文献中的自旋进行特征描述。

Research Letter: Characterizing spin in psychiatric clinical research literature using large language models.

作者信息

Perlis Roy H

机构信息

Center for Quantitative Health, Massachusetts General Hospital, Boston, MA.

Department of Psychiatry, Harvard Medical School, Boston, MA.

出版信息

medRxiv. 2024 Jul 1:2024.06.30.24309737. doi: 10.1101/2024.06.30.24309737.

Abstract

IMPORTANCE

Spin is a common form of biased reporting that misrepresents study results in publications as more positive than an objective assessment would indicate, but its prevalence in psychiatric journals is unknown.

OBJECTIVE

To apply a large language model to characterize the extent to which original reports of pharmacologic and non-pharmacologic interventions in psychiatric journals reflect spin.

DESIGN

We identified abstracts from studies published between 2013 and 2023 in 3 high-impact psychiatric journals describing randomized trials or meta-analyses of interventions.

MAIN OUTCOME AND MEASURE

Presence or absence of spin estimated by a large language model (GPT4-turbo, turbo-2024-04-09), validated using gold standard abstracts with and without spin.

RESULTS

Among a total of 663 abstracts, 296 (44.6%) exhibited possible or probable spin - 230/529 (43.5%) randomized trials, 66/134 (49.3%) meta-analyses; 148/310 (47.7%) for medication, 107/238 (45.0%) for psychotherapy, and 41/115 (35.7%) for other interventions. In a multivariable logistic regression model, reports of randomized trials, and non-pharmacologic/non-psychotherapy interventions, were less likely to exhibit spin, as were more recent publications.

CONCLUSIONS AND RELEVANCE

A substantial subset of psychiatric intervention abstracts in high-impact journals may contain results presented in a potentially misleading way, with the potential to impact clinical practice. The success in automating spin detection via large language models may facilitate identification and revision to minimize spin in future publications.

摘要

重要性

倾向性报道是一种常见的有偏见的报道形式,它在出版物中歪曲研究结果,使其比客观评估显示的更为积极,但在精神科期刊中的普遍程度尚不清楚。

目的

应用大语言模型来描述精神科期刊中药物和非药物干预的原始报告反映倾向性报道的程度。

设计

我们从2013年至2023年在3种高影响力精神科期刊上发表的研究中识别出描述干预措施的随机试验或荟萃分析的摘要。

主要结局和衡量指标

通过大语言模型(GPT4 - turbo,turbo - 2024 - 04 - 09)估计是否存在倾向性报道,并使用有或无倾向性报道的金标准摘要进行验证。

结果

在总共663篇摘要中,296篇(44.6%)表现出可能或很可能存在倾向性报道——230/529(43.5%)的随机试验,66/134(49.3%)的荟萃分析;药物治疗为148/310(47.7%),心理治疗为107/238(45.0%),其他干预为41/115(35.7%)。在多变量逻辑回归模型中,随机试验的报告以及非药物/非心理治疗干预的报告出现倾向性报道的可能性较小,近期发表的文章也是如此。

结论及意义

高影响力期刊中相当一部分精神科干预摘要可能包含以潜在误导性方式呈现的结果,这有可能影响临床实践。通过大语言模型成功实现倾向性报道检测自动化,可能有助于在未来出版物中识别并修订以尽量减少倾向性报道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验