Aljohani Nuha B, Qusti Safaa Y, Alsiny Madeeha, Aljoud Fadwa, Aljohani Norah Bakheet, Alsolami Eman S, Alamry Khalid A, Hussein Mahmoud A
Biochemistry Department, Faculty of Science, King Abdul Aziz University Jeddah 21589 Kingdom of Saudi Arabia.
Biochemistry Department, Faculty of Science, University of Tabuk Tabuk Kingdom of Saudi Arabia.
RSC Adv. 2024 Jul 12;14(30):22044-22055. doi: 10.1039/d4ra01965b. eCollection 2024 Jul 5.
Alzheimer's disease (AD) is a fatal neurological disorder that causes cognitive and memory function to deteriorate. A critical pathogenic event that speeds up the development of AD is the interaction between dysfunctional microglia and amyloid-β (Aβ). We have developed a hybrid nanocomposite material to treat AD by normalizing the dysfunctional microglia. The material is based on carboxymethylcellulose (CMC) encapsulated fingolimod, siRNA, and zinc oxide (ZnO) with variable loading (CMC-Fi-siRNA@ZnO ). The material was characterized using different techniques including FTIR, XRD, thermal analysis, SEM with EDX, and TEM micrographs. The chemical structure was confirmed by FTIR and XRD analyses, which indicated the successful integration of ZnO nanoparticles (NPs) into the polymer matrix, signifying a well-formed composite structure. The thermal stability order at 10% weight loss was CMC-Fi-siRNA@ZnO > CMC-Fi-siRNA@ZnO > CMC-Fi-siRNA@ZnO > CMC-Fi-siRNA@ZnO . The CMC-Fi-siRNA@ZnO dramatically alleviates the priming of microglia by lowering the level of proinflammatory mediators and increasing the secretion of BDNF. This considerably improves the phagocytosis of Aβ. In the cell viability test in immortalized microglia cells (IMG), the hybrid nanocomposite (NP) exhibited no significant effect on cell survival after 48 hours of incubation. The NP also decreased the cytotoxicity caused by Aβ. Therefore, the CMC-hybrid NP has high potential as a drug delivery system in the development of therapeutic strategies for AD.
阿尔茨海默病(AD)是一种致命的神经退行性疾病,会导致认知和记忆功能衰退。加速AD发展的一个关键致病事件是功能失调的小胶质细胞与β淀粉样蛋白(Aβ)之间的相互作用。我们开发了一种混合纳米复合材料,通过使功能失调的小胶质细胞恢复正常来治疗AD。该材料基于包裹有芬戈莫德、小干扰RNA(siRNA)和可变负载量氧化锌(ZnO)的羧甲基纤维素(CMC)(CMC-Fi-siRNA@ZnO )。使用包括傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、热分析、带有能谱仪(EDX)的扫描电子显微镜(SEM)和透射电子显微镜(TEM)照片等不同技术对该材料进行了表征。通过FTIR和XRD分析确认了化学结构,这表明ZnO纳米颗粒(NPs)成功整合到聚合物基质中,意味着形成了良好的复合结构。在失重10%时的热稳定性顺序为CMC-Fi-siRNA@ZnO > CMC-Fi-siRNA@ZnO > CMC-Fi-siRNA@ZnO > CMC-Fi-siRNA@ZnO 。CMC-Fi-siRNA@ZnO 通过降低促炎介质水平并增加脑源性神经营养因子(BDNF)的分泌,显著减轻了小胶质细胞的活化。这大大改善了Aβ的吞噬作用。在永生化小胶质细胞(IMG)的细胞活力测试中,混合纳米复合材料(NP)在孵育48小时后对细胞存活没有显著影响。该NP还降低了由Aβ引起的细胞毒性。因此,CMC混合NP在AD治疗策略开发中作为药物递送系统具有很高的潜力。