Jin Qiao, Zhang Qinghua, Bai He, Yang Meng, Ga Yonglong, Chen Shengru, Hong Haitao, Cui Ting, Rong Dongke, Lin Ting, Wang Jia-Ou, Ge Chen, Wang Can, Cao Yanwei, Gu Lin, Song Guozhu, Wang Shanmin, Jiang Kun, Cheng Zhi-Gang, Zhu Tao, Yang Hongxin, Jin Kui-Juan, Guo Er-Jia
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Spallation Neutron Source Science Center, Dongguan 523803, China.
Natl Sci Rev. 2024 Mar 19;11(8):nwae107. doi: 10.1093/nsr/nwae107. eCollection 2024 Aug.
The magnetic correlations at the superconductor/ferromagnet (S/F) interfaces play a crucial role in realizing dissipation-less spin-based logic and memory technologies, such as triplet-supercurrent spin-valves and 'π' Josephson junctions. Here we report the observation of an induced large magnetic moment at high-quality nitride S/F interfaces. Using polarized neutron reflectometry and DC SQUID measurements, we quantitatively determined the magnetization profile of the S/F bilayer and confirmed that the induced magnetic moment in the adjacent superconductor only exists below . Interestingly, the direction of the induced moment in the superconductors was unexpectedly parallel to that in the ferromagnet, which contrasts with earlier findings in S/F heterostructures based on metals or oxides. First-principles calculations verified that the unusual interfacial spin texture observed in our study was caused by the Heisenberg direct exchange coupling with constant J∼4.28 meV through -orbital overlapping and severe charge transfer across the interfaces. Our work establishes an incisive experimental probe for understanding the magnetic proximity behavior at S/F interfaces and provides a prototype epitaxial 'building block' for superconducting spintronics.
超导体/铁磁体(S/F)界面处的磁相关性在实现无耗散的基于自旋的逻辑和存储技术中起着至关重要的作用,例如三重态超流自旋阀和“π”约瑟夫森结。在此,我们报告了在高质量氮化物S/F界面处诱导出大磁矩的观测结果。利用极化中子反射测量和直流超导量子干涉仪测量,我们定量确定了S/F双层的磁化分布,并证实相邻超导体中的诱导磁矩仅在低于 时存在。有趣的是,超导体中诱导磁矩的方向意外地与铁磁体中的方向平行,这与基于金属或氧化物的S/F异质结构的早期发现形成对比。第一性原理计算证实,我们研究中观察到的异常界面自旋纹理是由通过 -轨道重叠和跨界面的严重电荷转移产生的具有常数J∼4.28 meV的海森堡直接交换耦合引起的。我们的工作建立了一个用于理解S/F界面处磁近邻行为的精确实验探针,并为超导自旋电子学提供了一个原型外延“构建块”。