Choi Songhee, Jin Qiao, Zi Xian, Rong Dongke, Fang Jie, Zhang Jinfeng, Zhang Qinghua, Li Wei, Xu Shuai, Chen Shengru, Hong Haitao, Ting Cui, Wang Qianying, Tang Gang, Ge Chen, Wang Can, Chen Zhiguo, Gu Lin, Li Qian, Wang Lingfei, Wang Shanmin, Hong Jiawang, Jin Kuijuan, Guo Er-Jia
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China.
Sci Adv. 2025 Aug 8;11(32):eadu6698. doi: 10.1126/sciadv.adu6698.
The integration of ferroelectrics with semiconductors is crucial for developing functional devices, such as field-effect transistors, tunnel junctions, and nonvolatile memories. However, the synthesis of high-quality single-crystalline ferroelectric nitride perovskites has been limited, hindering a comprehensive understanding of their switching dynamics. Here we report the synthesis and characterizations of epitaxial single-phase ferroelectric cerium tantalum nitride (CeTaN) on both oxides and semiconductors. The polar symmetry of CeTaN was confirmed by observing the atomic displacement of central ions relative to the center of the TaN octahedra, as well as through optical second harmonic generation. We observed switchable ferroelectric domains using piezoresponse force microscopy, complemented by the characterization of square-like polarization-electric field hysteresis loops. The remanent polarization of CeTaN reaches approximately 20 microcoulomb per square centimeter at room temperature, consistent with theoretical calculations. This work establishes a vital link between ferroelectric nitride perovskites and their practical applications, paving the way for next-generation information and energy storage devices.
铁电体与半导体的集成对于开发诸如场效应晶体管、隧道结和非易失性存储器等功能器件至关重要。然而,高质量单晶铁电氮化物钙钛矿的合成一直受到限制,这阻碍了对其开关动力学的全面理解。在此,我们报告了在氧化物和半导体上外延生长单相铁电铈钽氮化物(CeTaN)的合成及表征。通过观察中心离子相对于TaN八面体中心的原子位移以及光学二次谐波产生,证实了CeTaN的极性对称性。我们使用压电力显微镜观察到了可切换的铁电畴,并辅以方形极化 - 电场滞后回线的表征。CeTaN在室温下的剩余极化强度达到约每平方厘米20微库仑,与理论计算结果一致。这项工作在铁电氮化物钙钛矿与其实际应用之间建立了重要联系,为下一代信息和能量存储器件铺平了道路。