Suppr超能文献

多参数磁共振成像的影像组学特征可能有助于预测世界卫生组织二级脑膜瘤患者的无进展生存期。

Multi-parameter MRI radiomic features may contribute to predict progression-free survival in patients with WHO grade II meningiomas.

作者信息

Zeng Qiang, Tian Zhongyu, Dong Fei, Shi Feina, Xu Penglei, Zhang Jianmin, Ling Chenhan, Guo Zhige

机构信息

Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.

出版信息

Front Oncol. 2024 Jun 28;14:1246730. doi: 10.3389/fonc.2024.1246730. eCollection 2024.

Abstract

AIM

This study aims to investigate the potential value of radiomic features from multi-parameter MRI in predicting progression-free survival (PFS) of patients with WHO grade II meningiomas.

METHODS

Kaplan-Meier survival curves were used for survival analysis of clinical features. A total of 851 radiomic features were extracted based on tumor region segmentation from each sequence, and Max-Relevance and Min-Redundancy (mRMR) algorithm was applied to filter and select radiomic features. Bagged AdaBoost, Stochastic Gradient Boosting, Random Forest, and Neural Network models were built based on selected features. Discriminative abilities of models were evaluated using receiver operating characteristics (ROC) and area under the curve (AUC).

RESULTS

Our study enrolled 164 patients with WHO grade II meningiomas. Female gender (=0.023), gross total resection (GTR) (<0.001), age <68 years old (=0.023), and edema index <2.3 (=0.006) are protective factors for PFS in these patients. Both the Bagged AdaBoost model and the Neural Network model achieved the best performance on test set with an AUC of 0.927 (95% CI, Bagged AdaBoost: 0.834-1.000; Neural Network: 0.836-1.000).

CONCLUSION

The Bagged AdaBoost model and the Neural Network model based on radiomic features demonstrated decent predictive ability for PFS in patients with WHO grade II meningiomas who underwent operation using preoperative multi-parameter MR images, thus bringing benefit for patient prognosis prediction in clinical practice. Our study emphasizes the importance of utilizing advanced imaging techniques such as radiomics to improve personalized treatment strategies for meningiomas by providing more accurate prognostic information that can guide clinicians toward better decision-making processes when treating their patients' conditions effectively while minimizing risks associated with unnecessary interventions or treatments that may not be beneficial.

摘要

目的

本研究旨在探讨多参数磁共振成像(MRI)的影像组学特征在预测世界卫生组织(WHO)二级脑膜瘤患者无进展生存期(PFS)方面的潜在价值。

方法

采用Kaplan-Meier生存曲线对临床特征进行生存分析。基于每个序列的肿瘤区域分割提取了总共851个影像组学特征,并应用最大相关最小冗余(mRMR)算法对影像组学特征进行筛选和选择。基于所选特征构建了袋装AdaBoost、随机梯度提升、随机森林和神经网络模型。使用受试者工作特征(ROC)和曲线下面积(AUC)评估模型的判别能力。

结果

本研究纳入了164例WHO二级脑膜瘤患者。女性(=0.023)、全切除(GTR)(<0.001)、年龄<68岁(=0.023)和水肿指数<2.3(=0.006)是这些患者PFS的保护因素。袋装AdaBoost模型和神经网络模型在测试集上均表现最佳,AUC为0.927(95%CI,袋装AdaBoost:0.834-1.000;神经网络:0.836-1.000)。

结论

基于影像组学特征的袋装AdaBoost模型和神经网络模型对接受术前多参数MR图像手术的WHO二级脑膜瘤患者的PFS具有良好的预测能力,从而为临床实践中的患者预后预测带来益处。我们的研究强调了利用影像组学等先进成像技术的重要性,通过提供更准确的预后信息来改善脑膜瘤的个性化治疗策略,这些信息可以指导临床医生在有效治疗患者病情的同时,更好地进行决策,同时将与不必要干预或可能无益的治疗相关的风险降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adac/11239420/438c953c15ed/fonc-14-1246730-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验