INRAE, Bordeaux Sciences Agro, SAVE, 33882 Villenave d'Ornon, France.
INRAE, BioSP, 84914 Avignon, France.
Phytopathology. 2024 Oct;114(10):2310-2321. doi: 10.1094/PHYTO-02-24-0075-R. Epub 2024 Oct 15.
Although resistant cultivars are valuable in safeguarding crops against diseases, they can be rapidly overcome by pathogens. Numerous strategies have been proposed to delay pathogen adaptation (evolutionary control) while still ensuring effective protection (epidemiological control). For perennial crops, multiple resistance genes can be deployed (i) in the same cultivar (pyramiding strategy); in single-gene-resistant cultivars grown (ii) in the same field (mixture strategy) or (iii) in different fields (mosaic strategy); or (iv) in hybrid strategies that combine the three previous options. In addition, the spatial scale at which resistant cultivars are deployed can affect the plant-pathogen interaction: Small fields are thought to reduce pest density and disease transmission. Here, we used the spatially explicit stochastic model to compare the evolutionary and epidemiological control across spatial scales and deployment strategies relying on two major resistance genes. Our results, broadly focused on resistance to downy mildew of grapevine, show that the evolutionary control provided by the pyramiding strategy is at risk when single-gene-resistant cultivars are concurrently planted in the landscape (hybrid strategies), especially at low mutation probability. Moreover, the effectiveness of pyramiding compared with hybrid strategies is influenced by whether the adapted pathogen pays a fitness cost across all hosts or only for unnecessary virulence, particularly when the fitness cost is high rather than intermediate. Finally, field size did not affect model outputs for a wide range of mutation probabilities and associated fitness costs. The socioeconomic policies favoring the adoption of optimal resistant management strategies are discussed.
尽管抗性品种在保护作物免受病害方面具有重要价值,但它们很容易被病原体克服。人们提出了许多策略来延迟病原体的适应(进化控制),同时仍能确保有效保护(流行病学控制)。对于多年生作物,可以部署多个抗性基因:(i) 在同一品种中(基因叠加策略);(ii) 在同一田间种植的单基因抗性品种中(混合策略)或(iii) 在不同田间种植(镶嵌策略);或(iv) 在结合了前三种选择的杂种策略中。此外,抗性品种的部署空间尺度会影响植物-病原体相互作用:小面积的田地被认为可以降低害虫密度和疾病传播。在这里,我们使用空间显式随机模型来比较基于两个主要抗性基因的空间尺度和部署策略的进化和流行病学控制。我们的研究结果主要集中在葡萄霜霉病的抗性上,表明当单一基因抗性品种同时在景观中种植(杂种策略)时,基因叠加策略提供的进化控制存在风险,尤其是在突变概率较低的情况下。此外,与杂种策略相比,基因叠加的有效性受到适应病原体是否在所有宿主中付出适应性代价还是仅为不必要的毒性付出代价的影响,特别是当适应性代价较高而不是中等时。最后,田间面积大小并不影响模型在广泛的突变概率和相关适应代价下的输出结果。讨论了有利于采用最佳抗性管理策略的社会经济政策。