Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan, China.
MR Research China, GE Healthcare, Beijing, China.
Eur Spine J. 2024 Aug;33(8):2982-2996. doi: 10.1007/s00586-024-08409-0. Epub 2024 Jul 15.
To investigate potential of enhancing image quality, maintaining interobserver consensus, and elevating disease diagnostic efficacy through the implementation of deep learning-based reconstruction (DLR) processing in 3.0 T cervical spine fast magnetic resonance imaging (MRI) images, compared with conventional images.
The 3.0 T cervical spine MRI images of 71 volunteers were categorized into two groups: sagittal T2-weighted short T1 inversion recovery without DLR (Sag T2w-STIR) and with DLR (Sag T2w-STIR-DLR). The assessment covered artifacts, perceptual signal-to-noise ratio, clearness of tissue interfaces, fat suppression, overall image quality, and the delineation of spinal cord, vertebrae, discs, dopamine, and joints. Spanning canal stenosis, neural foraminal stenosis, herniated discs, annular fissures, hypertrophy of the ligamentum flavum or vertebral facet joints, and intervertebral disc degeneration were evaluated by three impartial readers.
Sag T2w-STIR-DLR images exhibited markedly superior performance across quality indicators (median = 4 or 5) compared to Sag T2w-STIR sequences (median = 3 or 4) (p < 0.001). No statistically significant differences were observed between the two sequences in terms of diagnosis and grading (p > 0.05). The interobserver agreement for Sag T2w-STIR-DLR images (0.604-0.931) was higher than the other (0.545-0.853), Sag T2w-STIR-DLR (0.747-1.000) demonstrated increased concordance between reader 1 and reader 3 in comparison to Sag T2w-STIR (0.508-1.000). Acquisition time diminished from 364 to 197 s through the DLR scheme.
Our investigation establishes that 3.0 T fast MRI images subjected to DLR processing present heightened image quality, bolstered diagnostic performance, and reduced scanning durations for cervical spine MRI compared with conventional sequences.
通过在 3.0T 颈椎快速磁共振成像(MRI)图像中实施基于深度学习的重建(DLR)处理,与常规图像相比,探讨提高图像质量、保持观察者间一致性和提高疾病诊断效果的潜力。
将 71 名志愿者的 3.0T 颈椎 MRI 图像分为两组:矢状 T2 加权短 T1 反转恢复无 DLR(Sag T2w-STIR)和有 DLR(Sag T2w-STIR-DLR)。评估包括伪影、感知信噪比、组织界面清晰度、脂肪抑制、整体图像质量以及脊髓、椎体、椎间盘、多巴胺和关节的描绘。由三位公正的读者评估椎管狭窄、神经孔狭窄、椎间盘突出、环形裂隙、黄韧带或脊椎关节突关节肥大以及椎间盘退变。
与 Sag T2w-STIR 序列(中位数=3 或 4)相比,Sag T2w-STIR-DLR 图像在质量指标(中位数=4 或 5)上表现出明显更好的性能(p<0.001)。两种序列在诊断和分级方面无统计学差异(p>0.05)。Sag T2w-STIR-DLR 图像的观察者间一致性(0.604-0.931)高于其他(0.545-0.853),与 Sag T2w-STIR 相比,Sag T2w-STIR-DLR 显示读者 1 和读者 3 之间的一致性增加(0.508-1.000)。通过 DLR 方案,采集时间从 364 秒减少到 197 秒。
我们的研究表明,与常规序列相比,3.0T 快速 MRI 图像经 DLR 处理后,颈椎 MRI 的图像质量提高,诊断性能提高,扫描时间缩短。