Suppr超能文献

基于超分辨率深度学习的颈椎 1.5T MRI 重建:与传统深度学习重建相比,在评估神经孔狭窄方面提高了观察者间的一致性。

Super-resolution Deep Learning Reconstruction Cervical Spine 1.5T MRI: Improved Interobserver Agreement in Evaluations of Neuroforaminal Stenosis Compared to Conventional Deep Learning Reconstruction.

机构信息

Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.

Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286-0124, Japan.

出版信息

J Imaging Inform Med. 2024 Oct;37(5):2466-2473. doi: 10.1007/s10278-024-01112-y. Epub 2024 Apr 26.

Abstract

The aim of this study was to investigate whether super-resolution deep learning reconstruction (SR-DLR) is superior to conventional deep learning reconstruction (DLR) with respect to interobserver agreement in the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI. This retrospective study included 39 patients who underwent 1.5T cervical spine MRI. T2-weighted sagittal images were reconstructed with SR-DLR and DLR. Three blinded radiologists independently evaluated the images in terms of the degree of neuroforaminal stenosis, depictions of the vertebrae, spinal cord and neural foramina, sharpness, noise, artefacts and diagnostic acceptability. In quantitative image analyses, a fourth radiologist evaluated the signal-to-noise ratio (SNR) by placing a circular or ovoid region of interest on the spinal cord, and the edge slope based on a linear region of interest placed across the surface of the spinal cord. Interobserver agreement in the evaluations of neuroforaminal stenosis using SR-DLR and DLR was 0.422-0.571 and 0.410-0.542, respectively. The kappa values between reader 1 vs. reader 2 and reader 2 vs. reader 3 significantly differed. Two of the three readers rated depictions of the spinal cord, sharpness, and diagnostic acceptability as significantly better with SR-DLR than with DLR. Both SNR and edge slope (/mm) were also significantly better with SR-DLR (12.9 and 6031, respectively) than with DLR (11.5 and 3741, respectively) (p < 0.001 for both). In conclusion, compared to DLR, SR-DLR improved interobserver agreement in the evaluations of neuroforaminal stenosis using 1.5T cervical spine MRI.

摘要

本研究旨在探讨在 1.5T 颈椎 MRI 上使用超分辨率深度学习重建(SR-DLR)是否比传统深度学习重建(DLR)在评估神经孔狭窄方面具有更高的观察者间一致性。本回顾性研究纳入了 39 例接受 1.5T 颈椎 MRI 检查的患者。使用 SR-DLR 和 DLR 对 T2 加权矢状图像进行重建。三名盲法放射科医生分别独立评估图像的神经孔狭窄程度、椎体、脊髓和神经孔的显示、锐利度、噪声、伪影和诊断可接受性。在定量图像分析中,第四位放射科医生通过在脊髓上放置圆形或椭圆形感兴趣区以及通过放置在线性感兴趣区穿过脊髓表面来评估信噪比(SNR)。使用 SR-DLR 和 DLR 评估神经孔狭窄的观察者间一致性分别为 0.422-0.571 和 0.410-0.542。读者 1 与读者 2 以及读者 2 与读者 3 之间的kappa 值差异有统计学意义。三位读者中的两位认为 SR-DLR 比 DLR 更能清晰显示脊髓、锐利度和诊断可接受性。SR-DLR 的 SNR 和边缘斜率(/mm)也明显优于 DLR(分别为 12.9 和 6031,分别为 11.5 和 3741,均 P<0.001)。总之,与 DLR 相比,SR-DLR 提高了在 1.5T 颈椎 MRI 上评估神经孔狭窄的观察者间一致性。

相似文献

4
Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging.
Eur J Radiol. 2024 Sep;178:111587. doi: 10.1016/j.ejrad.2024.111587. Epub 2024 Jul 3.
6
Effect of Deep Learning Reconstruction on Evaluating Cervical Spinal Canal Stenosis With Computed Tomography.
J Comput Assist Tomogr. 2023;47(6):996-1001. doi: 10.1097/RCT.0000000000001490. Epub 2023 Jun 9.

引用本文的文献

本文引用的文献

1
Impact of deep learning on radiologists and radiology residents in detecting breast cancer on CT: a cross-vendor test study.
Clin Radiol. 2024 Jan;79(1):e41-e47. doi: 10.1016/j.crad.2023.09.022. Epub 2023 Oct 13.
2
Feasibility study of super-resolution deep learning-based reconstruction using k-space data in brain diffusion-weighted images.
Neuroradiology. 2023 Nov;65(11):1619-1629. doi: 10.1007/s00234-023-03212-y. Epub 2023 Sep 7.
3
Clinical Impact of Deep Learning Reconstruction in MRI.
Radiographics. 2023 Jun;43(6):e220133. doi: 10.1148/rg.220133.
5
Effects of deep learning on radiologists' and radiology residents' performance in identifying esophageal cancer on CT.
Br J Radiol. 2023 Oct;96(1150):20220685. doi: 10.1259/bjr.20220685. Epub 2023 Apr 22.
7
Usefulness of deep learning-based noise reduction for 1.5 T MRI brain images.
Clin Radiol. 2023 Jan;78(1):e13-e21. doi: 10.1016/j.crad.2022.08.127. Epub 2022 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验