Suppr超能文献

预测复发/难治性 B 细胞急性淋巴细胞白血病患者嵌合抗原受体 T 细胞治疗成功的模型。

Predictive model for CAR-T cell therapy success in patients with relapsed/refractory B-cell acute lymphoblastic leukaemia.

机构信息

Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.

Center of Hematology Research, Anhui Medical University, Hefei, Anhui, China.

出版信息

Scand J Immunol. 2024 Apr;99(4):e13352. doi: 10.1111/sji.13352. Epub 2024 Jan 16.

Abstract

Chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated remarkable efficacy in treating relapsed/refractory acute B-cell lymphoblastic leukaemia (R/R B-ALL). However, a subset of patients does not benefit from CAR-T therapy. Our study aims to identify predictive indicators and establish a model to evaluate the feasibility of CAR-T therapy. Fifty-five R/R B-ALL patients and 22 healthy donors were enrolled. Peripheral blood lymphocyte subsets were analysed using flow cytometry. Sensitivity, specificity, accuracy, positive and negative predictive values and receiver operating characteristic (ROC) areas under the curve (AUC) were determined to evaluate the predictive values of the indicators. We identified B lymphocyte, regulatory T cell (Treg) and peripheral blood minimal residual leukaemia cells (B-MRD) as indicators for predicting the success of CAR-T cell preparation with AUC 0.936, 0.857 and 0.914. Furthermore, a model based on CD3 T count, CD4 T/CD8 T ratio, Treg and extramedullary diseases (EMD) was used to predict the response to CAR-T therapy with AUC of 0.938. Notably, a model based on CD4 T/CD8 T ratio, B, Treg and EMD were used in predicting the success of CAR-T therapy with AUC 0.966 [0.908-1.000], with specificity (92.59%) and sensitivity (91.67%). In the validated group, the predictive model predicted the success of CAR-T therapy with specificity (90.91%) and sensitivity (100%). We have identified several predictive indicators for CAR-T cell therapy success and a model has demonstrated robust predictive capacity for the success of CAR-T therapy. These results show great potential for guiding informed clinical decisions in the field of CAR-T cell therapy.

摘要

嵌合抗原受体 T 细胞(CAR-T)疗法在治疗复发/难治性急性 B 细胞淋巴细胞白血病(R/R B-ALL)方面显示出显著的疗效。然而,一部分患者无法从 CAR-T 疗法中获益。我们的研究旨在确定预测指标并建立一个模型来评估 CAR-T 治疗的可行性。共纳入 55 例 R/R B-ALL 患者和 22 名健康供者。采用流式细胞术分析外周血淋巴细胞亚群。确定了敏感性、特异性、准确性、阳性预测值和阴性预测值以及接受者操作特征(ROC)曲线下面积(AUC),以评估这些指标的预测价值。我们发现 B 淋巴细胞、调节性 T 细胞(Treg)和外周血微小残留白血病细胞(B-MRD)是预测 CAR-T 细胞制备成功的指标,其 AUC 分别为 0.936、0.857 和 0.914。此外,基于 CD3 T 计数、CD4 T/CD8 T 比值、Treg 和髓外疾病(EMD)建立的模型用于预测 CAR-T 治疗的反应,AUC 为 0.938。值得注意的是,基于 CD4 T/CD8 T 比值、B 细胞、Treg 和 EMD 的模型用于预测 CAR-T 治疗的成功率,AUC 为 0.966 [0.908-1.000],特异性(92.59%)和敏感性(91.67%)。在验证组中,预测模型预测 CAR-T 治疗的成功率具有特异性(90.91%)和敏感性(100%)。我们已经确定了几个预测 CAR-T 细胞治疗成功的指标,并且该模型还显示出对 CAR-T 治疗成功具有强大的预测能力。这些结果为指导 CAR-T 细胞治疗领域的临床决策提供了很大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验