Suppr超能文献

基因 5' 端稀有密码子的富集是由进化序列更替引起的一种副现象,并不会改善翻译。

Enrichment of rare codons at 5' ends of genes is a spandrel caused by evolutionary sequence turnover and does not improve translation.

机构信息

Department of Pharmacological Sciences, Stony Brook University, Stony Brook, United States.

Department of Microbiology and Immunology, Stony Brook University, Stony Brook, United States.

出版信息

Elife. 2024 Jul 15;12:RP89656. doi: 10.7554/eLife.89656.

Abstract

Previously, Tuller et al. found that the first 30-50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5' slow translation 'ramp.' We confirm that 5' regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5' translation. However, we also find that the 5' (and 3') ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5' end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5' ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5' end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5' ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5' translation is a 'spandrel'--a non-adaptive consequence of something else, in this case, the turnover of 5' ends in evolution, and it does not improve translation.

摘要

此前,Tuller 等人发现酵母和其他真核生物基因的前 30-50 个密码子略富集稀有密码子。他们认为这会减缓翻译速度,并且是适应性的,因为它可以使核糖体排队以防止碰撞。如今,不同密码子的翻译速度是已知的,事实上稀有密码子翻译得很慢。我们重新检查了这个 5' 缓慢翻译 '斜坡'。我们确认 5' 区域略富集稀有密码子;此外,它们下游的起始密码子(翻译速度快)减少,这两种效应都导致 5' 翻译缓慢。然而,我们还发现酵母基因的 5'(和 3')末端在进化中保存得很差,这表明它们不稳定,周转相对较快。当新的 5' 末端从头形成时,它很可能包含原本是稀有的密码子。由于进化有相对较短的时间来选择这些密码子,因此 5' 末端通常略富集稀有、慢速密码子。与 Tuller 等人的预期相反,我们通过直接实验表明,5' 末端翻译缓慢的基因表达相对较差,而替代翻译更快的同义密码子可以改善表达。直接实验表明,慢速密码子不会阻止下游核糖体碰撞。进一步的信息学研究表明,对于自然基因,缓慢的 5' 末端与较差的基因表达相关,这与 Tuller 等人的预期相反。因此,我们得出结论,缓慢的 5' 翻译是一个“副现象”——一种非适应性的结果,在这种情况下,是 5' 末端在进化中的周转,它不能提高翻译效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b87/11249729/fc18ac4d9a54/elife-89656-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验