Suppr超能文献

改进的核糖体足迹和 mRNA 测量为研究酵母翻译的动态和调控提供了新的见解。

Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation.

机构信息

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.

Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Cell Rep. 2016 Feb 23;14(7):1787-1799. doi: 10.1016/j.celrep.2016.01.043. Epub 2016 Feb 11.

Abstract

Ribosome-footprint profiling provides genome-wide snapshots of translation, but technical challenges can confound its analysis. Here, we use improved methods to obtain ribosome-footprint profiles and mRNA abundances that more faithfully reflect gene expression in Saccharomyces cerevisiae. Our results support proposals that both the beginning of coding regions and codons matching rare tRNAs are more slowly translated. They also indicate that emergent polypeptides with as few as three basic residues within a ten-residue window tend to slow translation. With the improved mRNA measurements, the variation attributable to translational control in exponentially growing yeast was less than previously reported, and most of this variation could be predicted with a simple model that considered mRNA abundance, upstream open reading frames, cap-proximal structure and nucleotide composition, and lengths of the coding and 5' UTRs. Collectively, our results provide a framework for executing and interpreting ribosome-profiling studies and reveal key features of translational control in yeast.

摘要

核糖体足迹分析为翻译提供了全基因组快照,但技术挑战可能会使其分析变得复杂。在这里,我们使用改进的方法来获得核糖体足迹图谱和 mRNA 丰度,这些方法更能真实地反映酿酒酵母中的基因表达。我们的结果支持了以下观点,即编码区的起始和与稀有 tRNA 匹配的密码子的翻译速度更慢。它们还表明,在一个包含十个残基的窗口内,仅具有三个碱性残基的新兴多肽往往会减缓翻译。通过改进的 mRNA 测量方法,在指数生长的酵母中归因于翻译控制的变异小于先前报道的,并且可以用一个简单的模型来预测大部分变异,该模型考虑了 mRNA 丰度、上游开放阅读框、帽近端结构和核苷酸组成以及编码区和 5'UTR 的长度。总的来说,我们的结果为执行和解释核糖体分析研究提供了一个框架,并揭示了酵母中翻译控制的关键特征。

相似文献

1
Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation.
Cell Rep. 2016 Feb 23;14(7):1787-1799. doi: 10.1016/j.celrep.2016.01.043. Epub 2016 Feb 11.
2
Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates.
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15023-15032. doi: 10.1073/pnas.1817299116. Epub 2019 Jul 10.
3
Folding free energies of 5'-UTRs impact post-transcriptional regulation on a genomic scale in yeast.
PLoS Comput Biol. 2005 Dec;1(7):e72. doi: 10.1371/journal.pcbi.0010072. Epub 2005 Dec 9.
4
Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.
Science. 2009 Apr 10;324(5924):218-23. doi: 10.1126/science.1168978. Epub 2009 Feb 12.
5
Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.
PLoS Genet. 2015 Dec 11;11(12):e1005732. doi: 10.1371/journal.pgen.1005732. eCollection 2015 Dec.
6
High-resolution view of the yeast meiotic program revealed by ribosome profiling.
Science. 2012 Feb 3;335(6068):552-7. doi: 10.1126/science.1215110. Epub 2011 Dec 22.
7
Adjacent Codons Act in Concert to Modulate Translation Efficiency in Yeast.
Cell. 2016 Jul 28;166(3):679-690. doi: 10.1016/j.cell.2016.05.070. Epub 2016 Jun 30.
8
Dissecting eukaryotic translation and its control by ribosome density mapping.
Nucleic Acids Res. 2005 Apr 28;33(8):2421-32. doi: 10.1093/nar/gki331. Print 2005.
9
GNN Codon Adjacency Tunes Protein Translation.
Int J Mol Sci. 2024 May 29;25(11):5914. doi: 10.3390/ijms25115914.
10
Transcriptome-wide investigation of stop codon readthrough in Saccharomyces cerevisiae.
PLoS Genet. 2021 Apr 20;17(4):e1009538. doi: 10.1371/journal.pgen.1009538. eCollection 2021 Apr.

引用本文的文献

1
Multi-omic assessment of mRNA translation dynamics in liver cancer cell lines.
Sci Data. 2025 Aug 30;12(1):1520. doi: 10.1038/s41597-025-05861-5.
2
Protein language models reveal evolutionary constraints on synonymous codon choice.
bioRxiv. 2025 Aug 5:2025.08.05.668603. doi: 10.1101/2025.08.05.668603.
3
5' untranslated regions tune translation.
bioRxiv. 2025 Jul 14:2025.07.14.664749. doi: 10.1101/2025.07.14.664749.
5
Predicting the translation efficiency of messenger RNA in mammalian cells.
Nat Biotechnol. 2025 Jul 25. doi: 10.1038/s41587-025-02712-x.
7
Why AGG is associated with high transgene output: passenger effects and their implications for transgene design.
NAR Genom Bioinform. 2025 Jun 19;7(2):lqaf086. doi: 10.1093/nargab/lqaf086. eCollection 2025 Jun.
8
Decoding the interactions and functions of non-coding RNA with artificial intelligence.
Nat Rev Mol Cell Biol. 2025 Jun 19. doi: 10.1038/s41580-025-00857-w.
9
Ribo-ITP: A Method for Ribosome Profiling in Single Cells and Low-Input Samples.
Methods Mol Biol. 2025;2923:197-214. doi: 10.1007/978-1-0716-4522-2_12.
10
Functional synonymous mutations and their evolutionary consequences.
Nat Rev Genet. 2025 May 20. doi: 10.1038/s41576-025-00850-1.

本文引用的文献

1
Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity.
Cell. 2015 Jun 18;161(7):1606-18. doi: 10.1016/j.cell.2015.05.022. Epub 2015 Jun 4.
2
Widespread Co-translational RNA Decay Reveals Ribosome Dynamics.
Cell. 2015 Jun 4;161(6):1400-12. doi: 10.1016/j.cell.2015.05.008.
4
5
Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling.
Science. 2014 Nov 7;346(6210):1257521. doi: 10.1126/science.1257521. Epub 2014 Nov 6.
6
7
Measurement of average decoding rates of the 61 sense codons in vivo.
Elife. 2014 Oct 27;3:e03735. doi: 10.7554/eLife.03735.
8
mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues.
Mol Cell. 2014 Oct 2;56(1):104-15. doi: 10.1016/j.molcel.2014.08.028. Epub 2014 Sep 25.
9
Translation inhibitors cause abnormalities in ribosome profiling experiments.
Nucleic Acids Res. 2014;42(17):e134. doi: 10.1093/nar/gku671. Epub 2014 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验