Suppr超能文献

照亮差分隐私的全景:关于可视化在实际部署中的应用的访谈研究。

Illuminating the Landscape of Differential Privacy: An Interview Study on the Use of Visualization in Real-World Deployments.

作者信息

Panavas Liudas, Sarker Amit, Bartolomeo Sara Di, Sarvghad Ali, Dunne Cody, Mahyar Narges

出版信息

IEEE Trans Vis Comput Graph. 2025 Sep;31(9):4983-4999. doi: 10.1109/TVCG.2024.3427733.

Abstract

As Differential Privacy (DP) transitions from theory to practice, visualization has surfaced as a catalyst in promoting acceptance and usage. Despite the potential of visualization tools to support differential privacy implementation, their development is limited by a lack of understanding of the overall deployment process, practitioner challenges, and the role of visual tools in real-world deployments. To narrow this gap, we interviewed 18 professionals from various backgrounds who regularly engage with differential privacy in their work. Our objectives were to understand the differential privacy implementation process and associated challenges; explore the actors (individuals involved in differential privacy implementation), how they use or struggle to use visualization; and identify the benefits and challenges of using visualization in the implementation process. Our results delineate the differential privacy implementation process into five distinct stages and highlight the main actors alongside the diverse visualization applications and shortcomings. We find that visualizations can be used to build foundational differential privacy knowledge, describe implementation parameters, and evaluate private outputs. However, the visualization strategies described often fail to address the diverse technical backgrounds and varied privacy and accuracy concerns of users, hindering effective communication between the different actors involved in the implementation process. From our findings, we propose three research directions: visualizations for setting and evaluating noise addition, evaluation of uncertainty visualization related to trust in differential privacy, and research focused on pedagogical visualizations for complex data science topics.

摘要

随着差分隐私(DP)从理论走向实践,可视化已成为促进其被接受和使用的催化剂。尽管可视化工具具有支持差分隐私实施的潜力,但其发展受到对整体部署过程、从业者面临的挑战以及可视化工具在实际部署中的作用缺乏了解的限制。为了缩小这一差距,我们采访了18位来自不同背景、在工作中经常接触差分隐私的专业人士。我们的目标是了解差分隐私的实施过程及相关挑战;探究实施者(参与差分隐私实施的个人),以及他们如何使用可视化或在使用中遇到困难;并确定在实施过程中使用可视化的好处和挑战。我们的结果将差分隐私实施过程划分为五个不同阶段,并突出了主要实施者以及多样的可视化应用和不足之处。我们发现可视化可用于构建差分隐私基础知识、描述实施参数以及评估隐私输出。然而,所描述的可视化策略往往无法解决用户多样的技术背景以及不同的隐私和准确性担忧,从而阻碍了实施过程中不同实施者之间的有效沟通。基于我们的研究结果,我们提出了三个研究方向:用于设置和评估噪声添加的可视化、与差分隐私信任相关的不确定性可视化评估,以及针对复杂数据科学主题的教学可视化研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验