Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland.
Institute of Molecular Biotechnology, NAWI Graz, BioTechMed, Graz University of Technology, Graz, 8010, Austria.
Plant J. 2024 Sep;119(5):2500-2513. doi: 10.1111/tpj.16935. Epub 2024 Jul 15.
Improvement of photosynthesis requires a thorough understanding of electron partitioning under both natural and strong electron sink conditions. We applied a wide array of state-of-the-art biophysical and biochemical techniques to thoroughly investigate the fate of photosynthetic electrons in the engineered cyanobacterium Synechocystis sp. PCC 6803, a blueprint for photosynthetic biotechnology, expressing the heterologous gene for ene-reductase, YqjM. This recombinant enzyme catalyses the reduction of an exogenously added substrate into the desired product by utilising photosynthetically produced NAD(P)H, enabling whole-cell biotransformation. Through coupling the biotransformation reaction with biophysical measurements, we demonstrated that the strong artificial electron sink, outcompetes the natural electron valves, the flavodiiron protein-driven Mehler-like reaction and cyclic electron transport. These results show that ferredoxin-NAD(P)H-oxidoreductase is the preferred route for delivering photosynthetic electrons from reduced ferredoxin and the cellular NADPH/NADP+ ratio as a key factor in orchestrating photosynthetic electron flux. These insights are crucial for understanding molecular mechanisms of photosynthetic electron transport and harnessing photosynthesis for sustainable bioproduction by engineering the cellular source/sink balance. Furthermore, we conclude that identifying the bioenergetic bottleneck of a heterologous electron sink is a crucial prerequisite for targeted engineering of photosynthetic biotransformation platforms.
提高光合作用需要彻底了解在自然和强电子汇条件下的电子分配。我们应用了广泛的最先进的生物物理和生化技术,彻底研究了在工程化蓝藻集胞藻 PCC 6803 中光合作用电子的命运,集胞藻 PCC 6803 是光合作用生物技术的蓝图,表达了异源基因 ene-还原酶 YqjM。这种重组酶利用光合作用产生的 NAD(P)H 催化外源添加的底物还原为所需产物,从而实现全细胞生物转化。通过将生物转化反应与生物物理测量相结合,我们证明了强人工电子汇会与天然电子阀、黄素铁蛋白驱动的类 Mehler 反应和循环电子传递竞争。这些结果表明,铁氧还蛋白-NAD(P)H-氧化还原酶是将还原型铁氧还蛋白中的光合作用电子传递到细胞 NADPH/NADP+ 比值的首选途径,作为协调光合作用电子流的关键因素。这些见解对于理解光合作用电子传递的分子机制以及通过工程化细胞源/汇平衡利用光合作用进行可持续的生物生产至关重要。此外,我们得出结论,确定异源电子汇的生物能量瓶颈是靶向光合作用生物转化平台工程的关键前提。