Suppr超能文献

从面部表情自动识别马的情绪状态。

Automated recognition of emotional states of horses from facial expressions.

机构信息

Information Systems Department, University of Haifa, Haifa, Israel.

Computer Science Department, University of Haifa, Haifa, Israel.

出版信息

PLoS One. 2024 Jul 15;19(7):e0302893. doi: 10.1371/journal.pone.0302893. eCollection 2024.

Abstract

Animal affective computing is an emerging new field, which has so far mainly focused on pain, while other emotional states remain uncharted territories, especially in horses. This study is the first to develop AI models to automatically recognize horse emotional states from facial expressions using data collected in a controlled experiment. We explore two types of pipelines: a deep learning one which takes as input video footage, and a machine learning one which takes as input EquiFACS annotations. The former outperforms the latter, with 76% accuracy in separating between four emotional states: baseline, positive anticipation, disappointment and frustration. Anticipation and frustration were difficult to separate, with only 61% accuracy.

摘要

动物情感计算是一个新兴的领域,迄今为止主要集中在疼痛方面,而其他情绪状态仍是未知领域,尤其是在马中。本研究首次开发了人工智能模型,使用在受控实验中收集的数据,自动从面部表情识别马的情绪状态。我们探索了两种类型的管道:一种是深度学习,其输入是视频片段;另一种是机器学习,其输入是 EquiFACS 注释。前者优于后者,在区分四种情绪状态(基线、积极期待、失望和挫折)方面的准确率为 76%。期待和挫折难以区分,准确率仅为 61%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a797/11249218/8d35a8564cb8/pone.0302893.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验