Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
Jia Hui Lim, Yadiel Vázquez Mena, Yu Ogawa, Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.
Angew Chem Int Ed Engl. 2024 Oct 14;63(42):e202410634. doi: 10.1002/anie.202410634. Epub 2024 Sep 12.
A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shapes and properties. However, the lack of well-defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation-assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme-triggered assembly (ETA) for the on-demand formation of well-defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo-electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non-natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures.
全面了解碳水化合物聚集的分子机制对于优化碳水化合物的利用以及设计具有特定形状和性能的仿生类似物至关重要。然而,缺乏明确的合成标准极大地阻碍了该领域的进展。在此,我们采用磷酸化辅助策略合成了以前无法获得的纤维素、壳聚糖和木聚糖的长寡聚物。这些寡聚物被用于酶触发组装(ETA),以按需形成具有明确定义的碳水化合物纳米材料,包括拉长的薄片、螺旋束和六方颗粒。低温电子显微镜和电子衍射分析为这些寡糖的聚集行为提供了分子见解,将所得形态与寡糖的一级序列直接联系起来。我们的研究结果表明,ETA 是阐明自然界中碳水化合物内在聚集行为的一种强大方法。此外,能够获得多种形态,并且可以扩展非天然序列,这突显了 ETA 与序列设计相结合作为获取可编程聚糖结构的强大工具的潜力。