Rafieyan Saeed, Ansari Elham, Vasheghani-Farahani Ebrahim
Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, PO Box, 14115-143 Tehran, Iran.
Biofabrication. 2024 Jul 25;16(4). doi: 10.1088/1758-5090/ad6374.
3D (Bio)printing is a highly effective method for fabricating tissue engineering scaffolds, renowned for their exceptional precision and control. Artificial intelligence (AI) has become a crucial technology in this field, capable of learning and replicating complex patterns that surpass human capabilities. However, the integration of AI in tissue engineering is often hampered by the lack of comprehensive and reliable data. This study addresses these challenges by providing one of the most extensive datasets on 3D-printed scaffolds. It provides the most comprehensive open-source dataset and employs various AI techniques, from unsupervised to supervised learning. This dataset includes detailed information on 1171 scaffolds, featuring a variety of biomaterials and concentrations-including 60 biomaterials such as natural and synthesized biomaterials, crosslinkers, enzymes, etc.-along with 49 cell lines, cell densities, and different printing conditions. We used over 40 machine learning and deep learning algorithms, tuning their hyperparameters to reveal hidden patterns and predict cell response, printability, and scaffold quality. The clustering analysis using KMeans identified five distinct ones. In classification tasks, algorithms such as XGBoost, Gradient Boosting, Extra Trees Classifier, Random Forest Classifier, and LightGBM demonstrated superior performance, achieving higher accuracy and F1 scores. A fully connected neural network with six hidden layers from scratch was developed, precisely tuning its hyperparameters for accurate predictions. The developed dataset and the associated code are publicly available onhttps://github.com/saeedrafieyan/MLATEto promote future research.
3D(生物)打印是制造组织工程支架的一种高效方法,以其卓越的精度和可控性而闻名。人工智能(AI)已成为该领域的一项关键技术,能够学习和复制超越人类能力的复杂模式。然而,人工智能在组织工程中的整合常常因缺乏全面可靠的数据而受到阻碍。本研究通过提供关于3D打印支架最广泛的数据集之一来应对这些挑战。它提供了最全面的开源数据集,并采用了从无监督学习到监督学习的各种人工智能技术。该数据集包括1171个支架的详细信息,涵盖多种生物材料和浓度,包括60种生物材料,如天然和合成生物材料、交联剂、酶等,以及49种细胞系、细胞密度和不同的打印条件。我们使用了40多种机器学习和深度学习算法,调整它们的超参数以揭示隐藏模式并预测细胞反应、可打印性和支架质量。使用KMeans进行的聚类分析确定了五个不同的类别。在分类任务中,XGBoost、梯度提升、极端随机树分类器、随机森林分类器和LightGBM等算法表现出卓越的性能,实现了更高的准确率和F1分数。从头开始开发了一个具有六个隐藏层的全连接神经网络,精确调整其超参数以进行准确预测。所开发的数据集和相关代码可在https://github.com/saeedrafieyan/MLATE上公开获取,以促进未来的研究。