Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Davis, CA, USA.
Center for the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, WA, USA.
Nat Neurosci. 2024 Sep;27(9):1844-1857. doi: 10.1038/s41593-024-01697-1. Epub 2024 Jul 15.
Neuropeptides are ubiquitous in the nervous system. Research into neuropeptides has been limited by a lack of experimental tools that allow for the precise dissection of their complex and diverse dynamics in a circuit-specific manner. Opioid peptides modulate pain, reward and aversion and as such have high clinical relevance. To illuminate the spatiotemporal dynamics of endogenous opioid signaling in the brain, we developed a class of genetically encoded fluorescence sensors based on kappa, delta and mu opioid receptors: κLight, δLight and µLight, respectively. We characterized the pharmacological profiles of these sensors in mammalian cells and in dissociated neurons. We used κLight to identify electrical stimulation parameters that trigger endogenous opioid release and the spatiotemporal scale of dynorphin volume transmission in brain slices. Using in vivo fiber photometry in mice, we demonstrated the utility of these sensors in detecting optogenetically driven opioid release and observed differential opioid release dynamics in response to fearful and rewarding conditions.
神经肽在神经系统中无处不在。由于缺乏实验工具,无法以特定于电路的方式精确剖析其复杂多样的动态,因此对神经肽的研究受到限制。阿片肽调节疼痛、奖励和厌恶,因此具有很高的临床相关性。为了阐明内源性阿片信号在大脑中的时空动力学,我们开发了一类基于κ、δ 和 μ 阿片受体的基因编码荧光传感器:κLight、δLight 和 μLight。我们在哺乳动物细胞和分离神经元中对这些传感器的药理学特征进行了表征。我们使用 κLight 来确定触发内源性阿片释放的电刺激参数以及脑片中 dynorphin 容积传递的时空尺度。在小鼠体内光纤光度测定中,我们证明了这些传感器在检测光遗传学驱动的阿片释放方面的实用性,并观察到对恐惧和奖励条件的不同阿片释放动力学。