Suppr超能文献

应用基于可解释机器学习的方法建立并验证中国基层医疗机构 2 型糖尿病患者心血管疾病 10 年风险预测模型。

Development and validation of 10-year risk prediction models of cardiovascular disease in Chinese type 2 diabetes mellitus patients in primary care using interpretable machine learning-based methods.

机构信息

Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong, China.

Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.

出版信息

Diabetes Obes Metab. 2024 Sep;26(9):3969-3987. doi: 10.1111/dom.15745. Epub 2024 Jul 15.

Abstract

AIM

To develop 10-year cardiovascular disease (CVD) risk prediction models in Chinese patients with type 2 diabetes mellitus (T2DM) managed in primary care using machine learning (ML) methods.

METHODS

In this 10-year population-based retrospective cohort study, 141 516 Chinese T2DM patients aged 18 years or above, without history of CVD or end-stage renal disease and managed in public primary care clinics in 2008, were included and followed up until December 2017. Two-thirds of the patients were randomly selected to develop sex-specific CVD risk prediction models. The remaining one-third of patients were used as the validation sample to evaluate the discrimination and calibration of the models. ML-based methods were applied to missing data imputation, predictor selection, risk prediction modelling, model interpretation, and model evaluation. Cox regression was used to develop the statistical models in parallel for comparison.

RESULTS

During a median follow-up of 9.75 years, 32 445 patients (22.9%) developed CVD. Age, T2DM duration, urine albumin-to-creatinine ratio (ACR), estimated glomerular filtration rate (eGFR), systolic blood pressure variability and glycated haemoglobin (HbA1c) variability were the most important predictors. ML models also identified nonlinear effects of several predictors, particularly the U-shaped effects of eGFR and body mass index. The ML models showed a Harrell's C statistic of >0.80 and good calibration. The ML models performed significantly better than the Cox regression models in CVD risk prediction and achieved better risk stratification for individual patients.

CONCLUSION

Using routinely available predictors and ML-based algorithms, this study established 10-year CVD risk prediction models for Chinese T2DM patients in primary care. The findings highlight the importance of renal function indicators, and variability in both blood pressure and HbA1c as CVD predictors, which deserve more clinical attention. The derived risk prediction tools have the potential to support clinical decision making and encourage patients towards self-care, subject to further research confirming the models' feasibility, acceptability and applicability at the point of care.

摘要

目的

应用机器学习(ML)方法,建立中国 2 型糖尿病(T2DM)患者在基层医疗中 10 年心血管疾病(CVD)风险预测模型。

方法

在这项基于人群的 10 年回顾性队列研究中,纳入了 2008 年在公共基层医疗诊所管理的年龄在 18 岁及以上、无 CVD 或终末期肾病病史的 141516 例中国 T2DM 患者,并随访至 2017 年 12 月。将三分之二的患者随机选择用于建立性别特异性 CVD 风险预测模型。其余三分之一的患者被用作验证样本,以评估模型的区分度和校准度。基于 ML 的方法被应用于缺失数据插补、预测因子选择、风险预测建模、模型解释和模型评估。Cox 回归被用于并行开发统计模型以进行比较。

结果

在中位随访 9.75 年期间,32445 例患者(22.9%)发生了 CVD。年龄、T2DM 病程、尿白蛋白与肌酐比值(ACR)、估算肾小球滤过率(eGFR)、收缩压变异性和糖化血红蛋白(HbA1c)变异性是最重要的预测因子。ML 模型还确定了几个预测因子的非线性效应,特别是 eGFR 和体重指数的 U 型效应。ML 模型的 Harrell's C 统计量>0.80,校准良好。在 CVD 风险预测方面,ML 模型明显优于 Cox 回归模型,并且能够更好地对个体患者进行风险分层。

结论

本研究使用常规可获得的预测因子和基于 ML 的算法,为中国基层医疗中的 T2DM 患者建立了 10 年 CVD 风险预测模型。研究结果强调了肾功能指标以及血压和 HbA1c 变异性作为 CVD 预测因子的重要性,值得更多的临床关注。所开发的风险预测工具有可能支持临床决策,并鼓励患者进行自我保健,但需要进一步的研究来确认这些模型在护理点的可行性、可接受性和适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验