Suppr超能文献

用于中国2型糖尿病患者糖尿病肾病风险预测模型的机器学习算法

Machine learning algorithms for diabetic kidney disease risk predictive model of Chinese patients with type 2 diabetes mellitus.

作者信息

Zou Lu-Xi, Wang Xue, Hou Zhi-Li, Sun Ling, Lu Jiang-Tao

机构信息

School of Management, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China.

出版信息

Ren Fail. 2025 Dec;47(1):2486558. doi: 10.1080/0886022X.2025.2486558. Epub 2025 Apr 7.

Abstract

BACKGROUND

Diabetic kidney disease (DKD) is a common and serious complication of diabetic mellitus (DM). More sensitive methods for early DKD prediction are urgently needed. This study aimed to set up DKD risk prediction models based on machine learning algorithms (MLAs) in patients with type 2 DM (T2DM).

METHODS

The electronic health records of 12,190 T2DM patients with 3-year follow-ups were extracted, and the dataset was divided into a training and testing dataset in a 4:1 ratio. The risk variables for DKD development were ranked and selected to establish forecasting models. The performance of models was further evaluated by the indexes of sensitivity, specificity, positive predictive value, negative predictive value, accuracy, as well as F1 score, using the testing dataset. The value of accuracy was used to select the optimal model.

RESULTS

Using the importance ranking in the random forest package, the variables of age, urinary albumin-to-creatinine ratio, serum cystatin C, estimated glomerular filtration rate, and neutrophil percentage were selected as the predictors for DKD onset. Among the seven forecasting models constructed by MLAs, the accuracy of the Light Gradient Boosting Machine (LightGBM) model was the highest, indicated that the LightGBM algorithms might perform the best for predicting 3-year risk of DKD onset.

CONCLUSIONS

Our study could provide powerful tools for early DKD risk prediction, which might help optimize intervention strategies and improve the renal prognosis in T2DM patients.

摘要

背景

糖尿病肾病(DKD)是糖尿病(DM)常见且严重的并发症。迫切需要更敏感的方法来早期预测DKD。本研究旨在基于机器学习算法(MLA)建立2型糖尿病(T2DM)患者的DKD风险预测模型。

方法

提取12190例有3年随访记录的T2DM患者的电子健康记录,并将数据集按4:1的比例分为训练集和测试集。对DKD发生的风险变量进行排序和选择,以建立预测模型。使用测试集,通过敏感性、特异性、阳性预测值、阴性预测值、准确性以及F1分数等指标进一步评估模型的性能。以准确性的值来选择最优模型。

结果

利用随机森林包中的重要性排序,选择年龄、尿白蛋白与肌酐比值、血清胱抑素C、估计肾小球滤过率和中性粒细胞百分比等变量作为DKD发病的预测因子。在由MLA构建的七个预测模型中,轻梯度提升机(LightGBM)模型的准确性最高,表明LightGBM算法在预测DKD发病3年风险方面可能表现最佳。

结论

我们的研究可为早期DKD风险预测提供有力工具,这可能有助于优化干预策略并改善T2DM患者的肾脏预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e775/11983574/b4232c67e3e0/IRNF_A_2486558_UF0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验