Suppr超能文献

大鼠心肌缺血缺氧损伤及缺氧H9C2细胞的转录组分析

Transcriptome Analysis of Myocardial Ischemic-Hypoxic Injury in Rats and Hypoxic H9C2 Cells.

作者信息

Niu Nan, Miao Huangtai, Ren Hongmei

机构信息

Department of Cardiovascular Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China.

Coronary Heart Disease Center,Beijing Anzhen Hospital, Capital Medical University, Beijing, China.

出版信息

ESC Heart Fail. 2024 Dec;11(6):3775-3795. doi: 10.1002/ehf2.14903. Epub 2024 Jul 15.

Abstract

AIMS

This study aimed to address inconsistencies in results between the H9C2 myocardial hypoxia (MH) cell line and myocardial infarction (MI) rat models used in MI research. We identified differentially expressed genes (DEGs) and underlying molecular mechanisms using RNA sequencing technology.

METHODS

RNA sequencing was used to analyse DEGs in MI rat tissues and H9C2 cells exposed to hypoxia for 24 h. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify key biological processes and pathways. Weighted correlation network analysis [weighted gene co-expression network analysis (WGCNA)] was used to construct gene co-expression networks, and hub genes were compared with published MI datasets [Gene Expression Omnibus (GEO)] for target identification.

RESULTS

GO analysis revealed enrichment of immune inflammation and mitochondrial respiration processes among 5139 DEGs in MI tissues and 2531 in H9C2 cells. KEGG analysis identified 537 overlapping genes associated with metabolism and oxidative stress pathways. Cross-analyses using the published GSE35088 and GSE47495 datasets identified 40 and 16 overlapping genes, respectively, with nine genes overlapping across all datasets and our models. WGCNA identified a key module in the MI model enriched for mRNA processing and protein binding. GO analysis revealed enrichment of mRNA processing, protein binding and mitochondrial respiratory chain complex I assembly in MI and H9C2 MH models. Five relevant hub genes were identified via a cross-analysis between the 92 hub genes that showed a common expression trend in both models.

CONCLUSIONS

This study reveals both shared and distinct transcriptomic responses in the MI and H9C2 models, highlighting the importance of model selection for studying myocardial ischaemia and hypoxia.

摘要

目的

本研究旨在解决心肌梗死(MI)研究中使用的H9C2心肌缺氧(MH)细胞系和MI大鼠模型之间结果不一致的问题。我们使用RNA测序技术鉴定差异表达基因(DEG)及其潜在的分子机制。

方法

采用RNA测序分析MI大鼠组织和缺氧处理24小时的H9C2细胞中的DEG。利用基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析来识别关键的生物学过程和通路。使用加权相关网络分析[加权基因共表达网络分析(WGCNA)]构建基因共表达网络,并将枢纽基因与已发表的MI数据集[基因表达综合数据库(GEO)]进行比较以进行靶点识别。

结果

GO分析显示,MI组织中的5139个DEG和H9C2细胞中的2531个DEG富集了免疫炎症和线粒体呼吸过程。KEGG分析确定了537个与代谢和氧化应激途径相关的重叠基因。使用已发表的GSE35088和GSE47495数据集进行交叉分析,分别鉴定出40个和16个重叠基因,其中有9个基因在所有数据集和我们的模型中均重叠。WGCNA在MI模型中确定了一个关键模块,该模块富含mRNA加工和蛋白质结合。GO分析显示,MI和H9C2 MH模型中富集了mRNA加工、蛋白质结合和线粒体呼吸链复合体I组装。通过对在两个模型中显示出共同表达趋势的92个枢纽基因进行交叉分析,确定了5个相关的枢纽基因。

结论

本研究揭示了MI和H9C2模型中共同的和不同的转录组反应,突出了模型选择在研究心肌缺血和缺氧中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9142/11631282/5b7918d93e0b/EHF2-11-3775-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验