Suppr超能文献

基于 3D 密集连接的异常行为识别。

Abnormal Behavior Recognition Based on 3D Dense Connections.

机构信息

School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, P. R. China.

School of Information Science and Technology, North China University of Technology, Beijing 100144, P. R. China.

出版信息

Int J Neural Syst. 2024 Sep;34(9):2450049. doi: 10.1142/S0129065724500497. Epub 2024 Jun 25.

Abstract

Abnormal behavior recognition is an important technology used to detect and identify activities or events that deviate from normal behavior patterns. It has wide applications in various fields such as network security, financial fraud detection, and video surveillance. In recent years, Deep Convolution Networks (ConvNets) have been widely applied in abnormal behavior recognition algorithms and have achieved significant results. However, existing abnormal behavior detection algorithms mainly focus on improving the accuracy of the algorithms and have not explored the real-time nature of abnormal behavior recognition. This is crucial to quickly identify abnormal behavior in public places and improve urban public safety. Therefore, this paper proposes an abnormal behavior recognition algorithm based on three-dimensional (3D) dense connections. The proposed algorithm uses a multi-instance learning strategy to classify various types of abnormal behaviors, and employs dense connection modules and soft-threshold attention mechanisms to reduce the model's parameter count and enhance network computational efficiency. Finally, redundant information in the sequence is reduced by attention allocation to mitigate its negative impact on recognition results. Experimental verification shows that our method achieves a recognition accuracy of 95.61% on the UCF-crime dataset. Comparative experiments demonstrate that our model has strong performance in terms of recognition accuracy and speed.

摘要

异常行为识别是一种用于检测和识别偏离正常行为模式的活动或事件的重要技术。它在网络安全、金融欺诈检测和视频监控等各个领域都有广泛的应用。近年来,深度卷积网络(ConvNets)已广泛应用于异常行为识别算法,并取得了显著的成果。然而,现有的异常行为检测算法主要侧重于提高算法的准确性,而没有探索异常行为识别的实时性。这对于快速识别公共场所的异常行为、提高城市公共安全至关重要。因此,本文提出了一种基于三维(3D)密集连接的异常行为识别算法。该算法采用多实例学习策略对各种类型的异常行为进行分类,并使用密集连接模块和软阈值注意力机制来减少模型的参数数量,提高网络的计算效率。最后,通过注意力分配来减少序列中的冗余信息,减轻其对识别结果的负面影响。实验验证表明,我们的方法在 UCF-crime 数据集上的识别准确率达到 95.61%。对比实验表明,我们的模型在识别准确率和速度方面具有较强的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验