Suppr超能文献

将TS-DBN模型应用于基于深度学习方法的运动行为识别。

Applying TS-DBN model into sports behavior recognition with deep learning approach.

作者信息

Guo Yingqing, Wang Xin

机构信息

Institute of Physical Education, Shandong University, Jinan, China.

College of Physical Education, Liaocheng University, Liaocheng, China.

出版信息

J Supercomput. 2021;77(10):12192-12208. doi: 10.1007/s11227-021-03772-x. Epub 2021 Apr 6.

Abstract

The purposes are to automatically collect information about human sports behavior from massive video data and provide an explicit recognition and analysis of body movements. The analysis of multi-scale input data, the improvement of spatiotemporal Deep Belief Network (DBN), and the different pooling strategies are regarded as the focuses to improve the belief networks in deep learning (DL). Moreover, a human sports behavior recognition model is proposed based on particular spatio-temporal features. Also, video frame data are collected from the Royal Institute of Technology (KTH) and University of Central Florida (UCF) datasets for training. The TensorFlow platform is employed to simulate the built algorithm. Finally, the constructed algorithm model is compared with the DBN proposed by Yang et al. the Convolutional Neural Network (CNN) proposed by Ullah et al. and the DBN-Hidden Markov Model (HMM) algorithm proposed by Xu et al. to analyse its performance. The recognition effects of each algorithm in the two datasets are analyzed. Results demonstrate that CNN developed by Ullah et al. has the worst accuracy on the KTH and UCF datasets, followed by DBN developed by Yang et al. and DBN-HMM developed by Xu et al. The constructed algorithm model can provide the highest accuracy, reaching about 90%, and the recognition accuracy of human sports behaviors of each algorithm on the KTH dataset is lower than that on the UCF dataset. On the KTH dataset, the recognition accuracy for boxing is the highest and running the lowest. Analyzing the model's accuracy in the four scenes (S1, S2, S3, and S4) on the KTH dataset suggests that the recognition accuracy for the indoor scene (S4) is higher than that of the outdoor scenes (S1, S2, and S3). On the UCF dataset, the recognition accuracy for lifting is the highest, reaching 99%, and that for walking is the lowest, reaching 51%. Therefore, the proposed human sports recognition model can provide a higher accuracy than other classic DL algorithms, providing an experimental basis for subsequent human sports recognition research.

摘要

目的是从海量视频数据中自动收集有关人类运动行为的信息,并对身体动作进行明确的识别和分析。多尺度输入数据的分析、时空深度信念网络(DBN)的改进以及不同的池化策略被视为深度学习(DL)中改进信念网络的重点。此外,基于特定的时空特征提出了一种人类运动行为识别模型。同时,从皇家理工学院(KTH)和中佛罗里达大学(UCF)数据集中收集视频帧数据进行训练。采用TensorFlow平台模拟所构建的算法。最后,将构建的算法模型与Yang等人提出的DBN、Ullah等人提出的卷积神经网络(CNN)以及Xu等人提出的DBN-隐马尔可夫模型(HMM)算法进行比较,以分析其性能。分析了各算法在两个数据集中的识别效果。结果表明,Ullah等人开发的CNN在KTH和UCF数据集上的准确率最低,其次是Yang等人开发的DBN和Xu等人开发的DBN-HMM。所构建的算法模型能提供最高的准确率,达到约90%,且各算法在KTH数据集上对人类运动行为的识别准确率低于在UCF数据集上的准确率。在KTH数据集上,拳击的识别准确率最高,跑步的最低。对KTH数据集上四个场景(S1、S2、S3和S4)的模型准确率进行分析表明,室内场景(S4)的识别准确率高于室外场景(S1、S2和S3)。在UCF数据集上,举重的识别准确率最高,达到99%,步行的最低,达到51%。因此,所提出的人类运动识别模型比其他经典DL算法具有更高的准确率,为后续人类运动识别研究提供了实验依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/217b/8022131/7bb0ecaecf56/11227_2021_3772_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验