Suppr超能文献

利用机器学习评估与动态故障相关的煤地球化学数据。

Using Machine Learning to Evaluate Coal Geochemical Data with Respect to Dynamic Failures.

作者信息

Hanson David R, Lawson Heather E

机构信息

CDC NIOSH Spokane Mining Research Division, Spokane, WA 99207, USA.

出版信息

Minerals (Basel). 2023 Jun 9;13(6):808. doi: 10.3390/min13060808.

Abstract

Dynamic failure events have occurred in the underground coal mining industry since its inception. Recent NIOSH research has identified geochemical markers that correlate with in situ reportable dynamic event occurrence, although the causes behind this correlative relationship remain unclear. In this study, NIOSH researchers conducted machine learning analysis to examine whether a model could be constructed to assess the probability of dynamic failure occurrence based on geochemical and petrographic data. Linear regression, random forest, dimensionality reduction, and cluster analyses were applied to a catalog of dynamic failure and control data from the Pennsylvania Coal Sample Databank, cross-referenced with accident data from the Mine Safety and Health Administration (MSHA). Analyses determined that 7 of the 18 geochemical parameters that were examined had the biggest impact on model performance. Classifications based on logistic regression and random forest models attained precision values of 85.7% and 96.7%, respectively. Dimensionality reduction was used to explore patterns and groupings in the data and to search for relationships between compositional parameters. Cluster analyses were performed to determine if an algorithm could find clusters with given class memberships and to what extent misclassifications of dynamic failure status occurred. Cluster analysis using a hierarchal clustering algorithm after dimensionality reduction resulted in four clusters, with one relatively distinct dynamic failure cluster, and three clusters mostly consisting of control group members but with a small number of dynamic failure members.

摘要

自地下煤矿开采行业诞生以来,就一直发生动力破坏事件。美国国家职业安全与健康研究所(NIOSH)最近的研究已经确定了与现场可报告动力事件发生相关的地球化学标志物,尽管这种相关关系背后的原因仍不清楚。在本研究中,NIOSH的研究人员进行了机器学习分析,以检验是否可以构建一个模型,基于地球化学和岩石学数据来评估动力破坏发生的概率。将线性回归、随机森林、降维和聚类分析应用于宾夕法尼亚煤炭样本数据库中的动力破坏与对照数据目录,并与美国矿山安全与健康管理局(MSHA)的事故数据进行交叉参考。分析确定,所检测的18个地球化学参数中有7个对模型性能影响最大。基于逻辑回归和随机森林模型的分类分别达到了85.7%和96.7%的精度值。使用降维来探索数据中的模式和分组,并寻找成分参数之间的关系。进行聚类分析以确定算法是否能够找到具有给定类别成员的聚类,以及动力破坏状态的错误分类发生的程度。在降维后使用层次聚类算法进行聚类分析,得到了四个聚类,其中一个相对独特的动力破坏聚类,以及三个主要由对照组成员组成但有少量动力破坏成员的聚类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9737/11249035/0b318c7dfd6d/nihms-2002525-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验