Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Front Immunol. 2024 Jul 1;15:1435838. doi: 10.3389/fimmu.2024.1435838. eCollection 2024.
IgA nephropathy (IgAN) is a significant contributor to chronic kidney disease (CKD). Renal arteriolar damage is associated with IgAN prognosis. However, simple tools for predicting arteriolar damage of IgAN remain limited. We aim to develop and validate a nomogram model for predicting renal arteriolar damage in IgAN patients.
We retrospectively analyzed 547 cases of biopsy-proven IgAN patients. Least absolute shrinkage and selection operator (LASSO) regression and logistic regression were applied to screen for factors associated with renal arteriolar damage in patients with IgAN. A nomogram was developed to evaluate the renal arteriolar damage in patients with IgAN. The performance of the proposed nomogram was evaluated based on a calibration plot, ROC curve (AUC) and Harrell's concordance index (C-index).
In this study, patients in the arteriolar damage group had higher levels of age, mean arterial pressure (MAP), serum creatinine, serum urea nitrogen, serum uric acid, triglycerides, proteinuria, tubular atrophy/interstitial fibrosis (T1-2) and decreased eGFR than those without arteriolar damage. Predictors contained in the prediction nomogram included age, MAP, eGFR and serum uric acid. Then, a nomogram model for predicting renal arteriolar damage was established combining the above indicators. Our model achieved well-fitted calibration curves and the C-indices of this model were 0.722 (95%CI 0.670-0.774) and 0.784 (95%CI 0.716-0.852) in the development and validation groups, respectively.
With excellent predictive abilities, the nomogram may be a simple and reliable tool to predict the risk of renal arteriolar damage in patients with IgAN.
IgA 肾病(IgAN)是慢性肾脏病(CKD)的重要病因。肾小动脉损伤与 IgAN 预后相关。然而,用于预测 IgAN 患者小动脉损伤的简单工具仍然有限。我们旨在开发和验证一种用于预测 IgAN 患者肾小动脉损伤的列线图模型。
我们回顾性分析了 547 例经活检证实的 IgAN 患者。应用最小绝对收缩和选择算子(LASSO)回归和逻辑回归筛选与 IgAN 患者肾小动脉损伤相关的因素。建立列线图评估 IgAN 患者肾小动脉损伤。基于校准图、ROC 曲线(AUC)和 Harrell 一致性指数(C-index)评估所提出列线图的性能。
在本研究中,与无小动脉损伤组相比,小动脉损伤组患者年龄、平均动脉压(MAP)、血清肌酐、血清尿素氮、血尿酸、三酰甘油、蛋白尿、肾小管萎缩/间质纤维化(T1-2)更高,eGFR 降低。预测列线图中的预测因子包括年龄、MAP、eGFR 和血尿酸。然后,结合上述指标建立了预测肾小动脉损伤的列线图模型。我们的模型获得了拟合良好的校准曲线,该模型在开发和验证组中的 C 指数分别为 0.722(95%CI 0.670-0.774)和 0.784(95%CI 0.716-0.852)。
该列线图具有良好的预测能力,可能是一种简单可靠的工具,可用于预测 IgAN 患者肾小动脉损伤的风险。