Sun Yaping, Ko Danny Hsu, Gao Jie, Fu Kang, Mao Yuanchen, He Yun, Tian Hui
Research Center of Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China.
Front Bioeng Biotechnol. 2024 Jul 1;12:1406722. doi: 10.3389/fbioe.2024.1406722. eCollection 2024.
Unveiling the potential application of psychrophilic polymerases as candidates for polymerase-nanopore long-read sequencing presents a departure from conventional choices such as thermophilic stearothermophilus (Bst) renowned for its limitation in temperature and mesophilic phage (phi29) polymerases for limitations in strong exonuclease activity and weak salt tolerance. Exploiting the PB-Bst fusion DNA polymerases from Psychrobacillus (PB) and stearothermophilus (Bst), our structural and biochemical analysis reveal a remarkable enhancement in salt tolerance and a concurrent reduction in exonuclease activity, achieved through targeted substitution of a pivotal functional domain. The sulfolobus 7-kDa protein (Sso7d) emerges as a standout fusion domain, imparting significant improvements in PB-Bst processivity. Notably, this study elucidates additional functional sites regulating exonuclease activity (Asp43 and Glu45) and processivity using artificial nucleotides (Glu266, Gln283, Leu334, Glu335, Ser426, and Asp430). By disclosing the intricate dynamics in exonuclease activity, strand displacement, and artificial nucleotide-based processivity at specific functional sites, our findings not only advance the fundamental understanding of psychrophilic polymerases but also provide novel insights into polymerase engineering.
揭示嗜冷聚合酶作为聚合酶-纳米孔长读长测序候选物的潜在应用,这与传统选择有所不同,例如嗜热嗜热栖热菌(Bst)因其温度限制而闻名,以及嗜温噬菌体(phi29)聚合酶因其强核酸外切酶活性限制和弱耐盐性。利用来自嗜冷芽孢杆菌(PB)和嗜热栖热菌(Bst)的PB-Bst融合DNA聚合酶,我们的结构和生化分析表明,通过对关键功能域进行靶向替换,耐盐性显著增强,同时核酸外切酶活性降低。硫磺矿7 kDa蛋白(Sso7d)作为一个突出的融合域出现,使PB-Bst的持续合成能力有了显著提高。值得注意的是,本研究利用人工核苷酸(Glu266、Gln283、Leu334、Glu335、Ser426和Asp430)阐明了调节核酸外切酶活性(Asp43和Glu45)和持续合成能力的其他功能位点。通过揭示特定功能位点上核酸外切酶活性、链置换和基于人工核苷酸的持续合成能力的复杂动态,我们的发现不仅推进了对嗜冷聚合酶的基本理解,还为聚合酶工程提供了新的见解。