Suppr超能文献

利用人工智能预测和管理术后疼痛:一项叙述性文献综述。

Harnessing artificial intelligence for predicting and managing postoperative pain: a narrative literature review.

作者信息

Sajdeya Ruba, Narouze Samer

机构信息

Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina.

Division of Pain Medicine, University Hospitals Medical Center, Cleveland, Ohio, USA.

出版信息

Curr Opin Anaesthesiol. 2024 Oct 1;37(5):604-615. doi: 10.1097/ACO.0000000000001408. Epub 2024 Jun 25.

Abstract

PURPOSE OF REVIEW

This review examines recent research on artificial intelligence focusing on machine learning (ML) models for predicting postoperative pain outcomes. We also identify technical, ethical, and practical hurdles that demand continued investigation and research.

RECENT FINDINGS

Current ML models leverage diverse datasets, algorithmic techniques, and validation methods to identify predictive biomarkers, risk factors, and phenotypic signatures associated with increased acute and chronic postoperative pain and persistent opioid use. ML models demonstrate satisfactory performance to predict pain outcomes and their prognostic trajectories, identify modifiable risk factors and at-risk patients who benefit from targeted pain management strategies, and show promise in pain prevention applications. However, further evidence is needed to evaluate the reliability, generalizability, effectiveness, and safety of ML-driven approaches before their integration into perioperative pain management practices.

SUMMARY

Artificial intelligence (AI) has the potential to enhance perioperative pain management by providing more accurate predictive models and personalized interventions. By leveraging ML algorithms, clinicians can better identify at-risk patients and tailor treatment strategies accordingly. However, successful implementation needs to address challenges in data quality, algorithmic complexity, and ethical and practical considerations. Future research should focus on validating AI-driven interventions in clinical practice and fostering interdisciplinary collaboration to advance perioperative care.

摘要

综述目的

本综述探讨了近期关于人工智能的研究,重点关注用于预测术后疼痛结果的机器学习(ML)模型。我们还确定了需要持续调查和研究的技术、伦理和实际障碍。

最新发现

当前的ML模型利用各种数据集、算法技术和验证方法来识别与急性和慢性术后疼痛加剧以及持续使用阿片类药物相关的预测生物标志物、风险因素和表型特征。ML模型在预测疼痛结果及其预后轨迹、识别可改变的风险因素以及受益于针对性疼痛管理策略的高危患者方面表现出令人满意的性能,并在疼痛预防应用中显示出前景。然而,在将ML驱动的方法整合到围手术期疼痛管理实践之前,需要更多证据来评估其可靠性、通用性、有效性和安全性。

总结

人工智能(AI)有潜力通过提供更准确的预测模型和个性化干预措施来加强围手术期疼痛管理。通过利用ML算法,临床医生可以更好地识别高危患者并相应地调整治疗策略。然而,成功实施需要解决数据质量、算法复杂性以及伦理和实际考虑方面的挑战。未来的研究应侧重于在临床实践中验证AI驱动的干预措施,并促进跨学科合作以推进围手术期护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验